Spill Prevention, Control, and Countermeasure Plan

Boca Raton Campus

Environmental Health and Safety
Florida Atlantic University
Building CO69, Room 112
777 Glades Road Boca Raton, FL 33431
Phone: 561-297-3129
Fax: 561-297-2210
Email: ehs@fau.edu
Web: www.fau.edu/ehs

November 2015
NOTICE: Copies of this publication can be obtained in an alternate format by contacting Environmental Health & Safety at ehs@fau.edu or 561-297-3129. This publication is available in standard print, Braille, or electronically for people with disabilities. Please allow at least 10 days to process this request.
TABLE OF CONTENTS

1 INTRODUCTION .. 1

1.1 PURPOSE .. 1

1.2 APPLICABILITY ... 1

1.3 STANDARDS OF PREPARATION & P.E. CERTIFICATION ... 2

1.4 PLAN ADMINISTRATION .. 2

1.4.1 Availability & Location .. 2

1.4.2 Amendment & Review .. 2

1.4.2.1 Amendment of SPCC Plan by Regional Administrator .. 2

1.4.2.2 Amendment of SPCC Plan by Owners or Operators ... 2

1.4.2.3 Five-Year Review and Evaluation ... 3

1.4.2.4 Amendment Implementation and Documentation ... 3

1.5 RESPONSIBILITY .. 3

1.6 MANAGEMENT APPROVAL ... 3

1.7 CONFORMANCE WITH REQUIREMENTS .. 3

1.7.1 Cross Reference with SPCC Provisions .. 3

1.7.2 Facilities, Procedures, Methods or Equipment Not Yet Operational ... 5

1.7.3 Overview of Applicable Sections of the Rule & Amendments .. 5

1.8 CERTIFICATION OF APPLICABILITY OF THE SUBSTANTIAL HARM CRITERIA CHECKLIST 5

2 GENERAL FACILITY INFORMATION, SITE PLAN, AND FACILITY DIAGRAM ... 5

2.1 FACILITY OWNER AND OPERATOR INFORMATION ... 5

2.2 FACILITY CONTACTS .. 6

2.3 FACILITY DESCRIPTION .. 6

2.4 FACILITY OIL STORAGE ... 6

2.5 SITE PLAN ... 6

2.6 FACILITY DIAGRAM .. 7

2.7 DRAINAGE PATHWAY AND PROXIMITY TO NAVIGABLE WATERS .. 7

2.8 FACILITY SPILL HISTORY ... 7

3 DISCHARGE NOTIFICATION .. 8

3.1 NOTIFICATION RESPONSIBILITY .. 8

3.2 SPILLS THAT DO NOT REQUIRE NOTIFICATION ... 8

3.3 SPILLS THAT REQUIRE INITIAL NOTIFICATION ... 8

3.4 EXTERNAL AGENCY NOTIFICATION ... 9

3.4.1 Notification Criteria .. 10

3.4.2 Whom to Notify .. 10

3.4.2.1 The National Response Center .. 10

3.4.2.2 The State Watch Office ... 10

3.4.2.3 The Florida Department of Environmental Protection .. 10

3.4.3 What Information to Include ... 11

3.4.4 Where to Find Additional Assistance ... 11

4 DISCHARGE RESPONSE .. 12

4.1 DISCOVERY OF A RELEASE .. 12

4.1.1 Initial Response Actions .. 12

4.1.1.1 What to Include .. 12

4.1.1.2 What to Leave Out .. 12

4.2 DISCHARGE RESPONSE .. 12

4.2.1 PROGRESS REPORTS .. 12

4.2.2 CORRECTIVE ACTIONS ... 12

4.2.3 CONSULTATION WITH REGIONAL ADMINISTRATOR .. 12

4.2.4 FACILITY OWNERS AND OPERATORS SHOULD RECORD ... 12

4.2.5歐洲新.jpg

i
POTENTIAL DISCHARGE VOLUMES AND FLOW DIRECTIONS ... 16

CONTAINMENT AND DIVERSIONARY STRUCTURES .. 18

ABOVEGROUND STORAGE TANKS .. 18
UNDERGROUND STORAGE TANKS ... 19
TRANSFORMERS .. 19
ELEVATORS .. 19
OTHER EQUIPMENT .. 19

PRACTICABILITY OF SECONDARY CONTAINMENT .. 20

INSPECTIONS, TESTS AND RECORDS ... 20

REGULATED STORAGE TANKS ... 20
NON-REGULATED STORAGE TANKS .. 20
OTHER OIL-CONTAINING TANKS, EQUIPMENT, AND MACHINERY ... 20

PERSONNEL TRAINING AND DISCHARGE PREVENTION PROCEDURES .. 21

PERSONNEL TRAINING .. 21
DISCHARGE PREVENTION BRIEFINGS .. 21
GENERAL DISCHARGE PREVENTION PROCEDURES .. 21
TRUCK LOADING AND OFFLOADING OPERATIONS ... 21
Preparation for Offloading .. 22
Precautions While Offloading .. 22
Precautions Prior to Departure .. 22
Truck Loading and Offloading Emergencies .. 23
SECONDARY CONTAINMENT FOR VEHICLES ... 23

SECURITY .. 23

STORAGE TANK ACCESS .. 23
ELEVATORS AND TRANSFORMERS ACCESS ... 24
FLOW VALVE ACCESS ... 24
STARTER CONTROL ACCESS .. 24
CAMPUS LIGHTING .. 24

FACILITY DRAINAGE ... 24

BULK STORAGE CONTAINERS / SECONDARY CONTAINMENT .. 25

INSPECTIONS ... 25

LEAKAGE CONTROL ... 25

OVERFILL PREVENTION SYSTEMS ... 25

EFFLUENT TREATMENT FACILITIES .. 26

VISIBLE DISCHARGES ... 26
1 Introduction

1.1 Purpose
This Spill Prevention, Control, and Countermeasure (SPCC) plan was prepared by Florida Atlantic University (FAU) for the Boca Raton Campus, located at 777 Glades Road, Boca Raton, Florida 33431. The primary purpose of this SPCC is to establish the University’s procedures, methods, equipment, and other requirements to prevent the discharge of oil into or upon the navigable waters of the United States. Should a spill or release of oil occur, this SPCC also provides guidance to help minimize negative impacts to human health and the environment and streamline response and recovery efforts.

This Plan has been prepared to satisfy the requirements of Title 40, Code of Federal Regulations, Part 112 – Oil Pollution Prevention (40 CFR Part 112) as well as all applicable requirements specified in subsequent amendments to this regulation, issued through November 2009.

The term “oil”, as used throughout this SPCC, is broadly defined as oil of any kind or in any form, including, but not limited to: fats, oils, or greases of animal, fish, or marine mammal origin; vegetable oils, including oils from seeds, nuts, fruits, or kernels; and, other oils and greases, including petroleum, fuel oil, sludge, synthetic oils, mineral oils, oil refuse, or oil mixed with wastes other than dredged spoil.

Note: Since the requirements of §112.8 and §112.12 are comparable, FAU will apply the same standards, protective measures, and release response methodology observed for petroleum-based oil to bulk containers of plant and animal oils (i.e. used cooking oils) as well.

1.2 Applicability
The regulations apply to facilities engaged in the production, storage and/or use of oil, if those facilities could reasonably be expected to discharge oil into or upon the navigable waters of the United States in quantities that may be harmful. Such a discharge would violate applicable water quality standards, cause a surface sheen on or discoloration of navigable waters or adjoining shorelines, or cause sludge or emulsion to be deposited beneath the surface of the water or upon adjoining shorelines.

The regulations provide an exemption for facilities whose underground oil storage capacity is 42,000 gallons or less and whose aboveground oil storage capacity does not exceed 1,320 gallons. However, FAU’s aboveground storage capacity exceeds 1,320 gallons, thus the University is required to comply with applicable portions of the regulations. Diesel fuel and gasoline account for the largest portion of the oil stored on campus. Oil is also stored in transformers, switches, pumps, compressors and other mechanical or electrical equipment. Additionally, used cooking oil and used motor oil are collected for recycling.

This SPCC plan is applicable for all university operations that involve the storage, transfer, or use of oil that may potentially result in discharge under both normal working conditions or during an emergency situation. Note: The term “facility” is used generically throughout this SPCC and refers to FAU’s Boca Raton campus in its entirety, unless otherwise noted.
1.3 Standards of Preparation & P.E. Certification
This written SPCC Plan has been prepared in accordance with good engineering practices and in the sequence required by the regulations. Required procedures or information have been placed, as needed, in appendices to this plan.

This plan has been reviewed and certified by a licensed Professional Engineer (P.E.). A copy of the P.E. certification is included in Appendix A.

1.4 Plan Administration

1.4.1 Availability & Location
The FAU SPCC Plan and all supporting documents are maintained by Environmental Health and Safety in cooperation with Facilities Planning. The SPCC Plan is available to University departments and employees as well as the general public via the Environmental Health and Safety web site (www.fau.edu/ehs), though, in the interest of University security, some sensitive information is not presented on the web site. The plan, in its entirety, is available for on-site review at the offices of Environmental Health and Safety and/or Facilities Planning.

1.4.2 Amendment & Review

1.4.2.1 Amendment of SPCC Plan by Regional Administrator
If FAU discharges more than 1,000 gallons of oil in a single discharge, or discharges more than 42 gallons of oil in each of two discharges occurring within any twelve month period, FAU will submit the information required by §112.4(a) of the regulations to the EPA Regional Administrator.

If after review of the information submitted by FAU, the Regional Administrator finds that the Plan does not meet the requirements of the regulations or that amendment is necessary to prevent and contain discharges from FAU, the Regional Administrator may require FAU to amend this Plan. If the Regional Administrator proposes that the Plan be amended, FAU will, within 30 days, either amend the Plan and implement the amended Plan or appeal the decision. If FAU chooses to amend the Plan, the Plan will be amended within 30 days and implemented as soon as possible but no later than six months after the amendment. If FAU appeals the decision, the Regional Administrator must notify FAU of his decision within 60 days of receiving the appeal.

1.4.2.2 Amendment of SPCC Plan by Owners or Operators
FAU will amend this Plan when there is a change in facility design, construction, operation, or maintenance that materially affects its potential for a discharge. Examples of changes that may require amendment of the Plan include, but are not limited to:

- Commissioning or decommissioning containers;
- Replacement, reconstruction, or movement of containers;
- Reconstruction, replacement, or installation of piping systems;
- Construction or demolition that might alter secondary containment structures;
- Changes of product or service; or
• Revision of standard operation or maintenance procedures at a facility.

An amendment made under this section will be prepared within six months, and implemented as soon as possible, but not later than six months following preparation of the amendment.

1.4.2.3 Five-Year Review and Evaluation
FAU will review and evaluate its SPCC Plan at least once every five years. As a result of this review and evaluation, FAU will amend its SPCC Plan within six months of the review to include more effective prevention and control technology if the technology has been field-proven at the time of the review and will significantly reduce the likelihood of a discharge.

1.4.2.4 Amendment Implementation and Documentation
FAU will implement any amendment as soon as possible, but not later than six months following preparation of any amendment. FAU will document completion of the review and evaluation, and sign a statement as to whether the Plan will be amended. FAU will have a Professional Engineer certify any technical amendments to this Plan. The form used to document that review and evaluation for amendment has been completed is provided in Appendix B, along with an amendment log sheet.

1.5 Responsibility
The Director of Environmental Health and Safety and the University’s Environmental Program Coordinator are responsible for developing and maintaining this SPCC, and for making sure that the plan is available to the EPA Regional Administrator for on-site review.

1.6 Management Approval
This SPCC has the full approval of management at a level of authority needed to commit the necessary resources required to fully implement the plan in the unlikely event of a discharge of oil into or upon the navigable waters of the United States.

This SPCC has been approved by the University’s Director of Environmental Health and Safety. A signed confirmation of management approval is included in Appendix C.

1.7 Conformance with Requirements

1.7.1 Cross Reference with SPCC Provisions
Table 1.7.1-A cross references the sections of the FAU SPCC to applicable parts of 40 CFR Part 112.

<table>
<thead>
<tr>
<th>Applicable Section of 40 CFR 112</th>
<th>Description</th>
<th>Location in SPCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>112.1</td>
<td>Applicability</td>
<td>Section 1.2</td>
</tr>
<tr>
<td>112.3(d)</td>
<td>Professional Engineer Certification</td>
<td>Section 1.3 & Appendix A</td>
</tr>
<tr>
<td>112.3(e)</td>
<td>Availability and Location</td>
<td>Section 1.4.1</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Location</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>112.4</td>
<td>Amendment of SPCC Plan by Regional Administrator</td>
<td>Section 1.4.2.1</td>
</tr>
<tr>
<td>112.5</td>
<td>Amendment of SPCC Plan by Owners or Operators</td>
<td>Section 1.4.2.2</td>
</tr>
<tr>
<td>112.5(b)</td>
<td>Five-Year Review & Evaluation</td>
<td>Section 1.4.2.3 & Appendix B</td>
</tr>
<tr>
<td>112.7</td>
<td>Management Approval</td>
<td>Section 1.6 & Appendix C</td>
</tr>
<tr>
<td>112.7</td>
<td>Cross Reference with SPCC Provisions</td>
<td>Section 1.7.1</td>
</tr>
<tr>
<td>112.7</td>
<td>Facilities, Procedures, Methods or Equipment Not Yet Operational</td>
<td>Section 1.7.2 & Appendix D</td>
</tr>
<tr>
<td>112.7 (a)(1)</td>
<td>Conformance with Requirements</td>
<td>Section 1.7.3, 1.8 & Appendix E</td>
</tr>
<tr>
<td>112.7(a)(3)</td>
<td>General facility information</td>
<td>Section 2.1 - 2.4 & Appendix F</td>
</tr>
<tr>
<td>112.7(a)(3)</td>
<td>Facility site plan</td>
<td>Section 2.5 & Appendix G</td>
</tr>
<tr>
<td>112.7(a)(3)</td>
<td>Facility diagram</td>
<td>Section 2.6 & Appendix H</td>
</tr>
<tr>
<td>112.7(a)(4)</td>
<td>Discharge notification</td>
<td>Section 3 & Appendix I</td>
</tr>
<tr>
<td>112.7(a)(5)</td>
<td>Discharge response</td>
<td>Section 4</td>
</tr>
<tr>
<td>112.7(b)</td>
<td>Potential discharge volumes and direction of flow</td>
<td>Section 5</td>
</tr>
<tr>
<td>112.7(c)</td>
<td>Containment and diversionary structures</td>
<td>Section 6</td>
</tr>
<tr>
<td>112.7(d)</td>
<td>Practicability of secondary containment</td>
<td>Section 7</td>
</tr>
<tr>
<td>112.7(e)</td>
<td>Inspections, tests and records</td>
<td>Section 8</td>
</tr>
<tr>
<td>112.7(f)</td>
<td>Personnel training, and discharge prevention procedures</td>
<td>Section 9</td>
</tr>
<tr>
<td>112.7(g)</td>
<td>Security</td>
<td>Section 10</td>
</tr>
<tr>
<td>112.8.b</td>
<td>Facility drainage</td>
<td>Section 11</td>
</tr>
<tr>
<td>112.8(c)(1-5)</td>
<td>Bulk Storage Containers / Secondary Containment</td>
<td>Section 12</td>
</tr>
<tr>
<td>112.8(c)(6)</td>
<td>Inspections</td>
<td>Section 13 & Appendix J</td>
</tr>
<tr>
<td>112.8(c)(7)</td>
<td>Leakage control</td>
<td>Section 14</td>
</tr>
<tr>
<td>112.8(c)(8)</td>
<td>Overfill prevention system</td>
<td>Section 15</td>
</tr>
<tr>
<td>112.8(c)(9)</td>
<td>Effluent treatment facilities</td>
<td>Section 16</td>
</tr>
<tr>
<td>112.8(c)(10)</td>
<td>Visible discharges</td>
<td>Section 17</td>
</tr>
<tr>
<td>112.8(c)(11)</td>
<td>Mobile and portable containers</td>
<td>Section 18</td>
</tr>
<tr>
<td>112.8(d)</td>
<td>Transfer operations, pumping, and in-plant processes</td>
<td>Section 19</td>
</tr>
<tr>
<td>112.12</td>
<td>Requirements for Animal Fats and Oils and Greases for Onshore Facilities</td>
<td>Same as SPCC procedures for petroleum oil.</td>
</tr>
</tbody>
</table>
1.7.2 Facilities, Procedures, Methods or Equipment Not Yet Operational
Additional facilities or procedures, methods, or equipment not yet fully operational at the time of execution of this SPCC, are discussed in Appendix D. The details of installation and operational start-up are discussed, as are conformance with the requirements listed Part 112.7.

1.7.3 Overview of Applicable Sections of the Rule & Amendments
The preparation of this SPCC Plan included a comprehensive review of the regulations (40 CFR Part 112) and Amendments from December 2006, December 2008, and November 2009 to determine which subparts and sections apply to FAU operations.

The review indicated that FAU must comply with applicable requirements in Subpart A, §112.1 through §112.7. Additionally, FAU must comply with applicable requirements in Subpart B, §112.8, and Subpart C, §112.12.

Taken in its entirety, this Plan and its supporting documents address all applicable requirements. If FAU operations change to the extent that additional sections become applicable, FAU will amend this plan and implement the amended plan as required.

1.8 Certification of Applicability of the Substantial Harm Criteria Checklist
Per the requirements of Section 112.20(e) of the facility response plan regulations, as a facility regulated by 40 CFR Part 112, FAU must complete Appendix C to Part 112 – Substantial Harm Criteria. This initial screening is used to determine whether the University is required to develop a facility response plan.

Based on the results of the initial screening, at the time of execution of this SPCC, FAU’s Boca Raton Campus was not required to submit a facility response plan. Results of the screening are included in Appendix E of this SPCC.

2 General Facility Information, Site Plan, and Facility Diagram

2.1 Facility Owner and Operator Information
The facility owner name, address, and telephone number is as follows:

Board of Trustees
Florida Atlantic University
777 Glades Road, ADM 326
Boca Raton, FL 33431
(561) 297-3000

The facility operator name, address, and telephone number is as follows:

Florida Atlantic University
777 Glades Road, Boca Raton, Florida 33431
(561) 297-3000
2.2 Facility Contacts

Facility contacts for this SPCC are presented in Table 2.2.1 below. These contacts shall be notified immediately in the event of an oil spill or discharge.

Table 2-1 Facility Contact Information

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Mobile Phone</th>
<th>Office Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dennis Zabel</td>
<td>Director, EH&S</td>
<td>561-239-4199</td>
<td>561-297-3152</td>
</tr>
<tr>
<td>Leanne Cobb</td>
<td>SPCC Coordinator</td>
<td>561-414-3224</td>
<td>561-297-2385</td>
</tr>
<tr>
<td>Darlene Ward</td>
<td>Associate Director, EH&S</td>
<td>561-239-4201</td>
<td>561-297-0028</td>
</tr>
</tbody>
</table>

2.3 Facility Description

Florida Atlantic University’s Boca Raton Campus is located at 777 Glades Road, Boca Raton, Florida. The campus is located half way between the cities of Fort Lauderdale and West Palm Beach, in Palm Beach County, at approximate coordinates of: 26.371868, -80.101651. A broad range of academic programs, activities, and services are offered.

In 1936, this site was originally the location of the Boca Raton Airport, a small city airport. During World War II, the Army began building an air base at the location. Ultimately the air base boundaries included 5,860 acres and extended from Dixie Highway on the East to Military Trail on the West and from the current NW 51st Street on the North to Palmetto Park Road at some points on the South. On December 29, 1948, the Boca Raton Airport was transferred to the Town of Boca Raton. In the 1950s, the Federal government released 1000 acres of the property for educational use and transferred ownership of all the land to the State of Florida. In 1961, Florida Atlantic University began operations on the site.

The site is now bordered to the North by Spanish River Blvd, to the East by the El Rio Canal, to the South by the City of Boca Raton Water Treatment Plant and Glades Road, and to the West by the Boca Raton Airport. At present, the facility covers approximately 850 acres.

2.4 Facility Oil Storage

Florida Atlantic University stores oil for use in emergency generators and in support of a variety of facility operations. The Boca Raton campus also has oil-containing equipment located throughout the facility. The locations where oil is either stored or contained in equipment in quantities of 55 gallons or greater are summarized in Appendix F.

The majority of the facility’s oil storage falls into one of the following categories:

- Diesel storage for emergency generators
- Unleaded gasoline and ultra-low sulfur diesel storage for vehicle use
- Small quantities of used oil collected from maintenance activities
- Hydraulic oil contained in elevators
- Mineral spirits contained in transformers
- Food oil stored for use in food preparation
• Waste food oil and grease collected from food preparation

2.5 Site Plan
The site plan for Florida Atlantic University’s Boca Raton Campus is provided in Appendix G. This site plan was extracted from the 2009 USGS 7.5-Minute Topographic Maps for Delray Beach and Boca Raton, Florida, since the campus is split between both maps. Note: The available topographic maps predate the addition of the Innovation Village Apartments and new football stadium on campus. The approximate location of these new additions has been indicated on the map.

2.6 Facility Diagram
A facility diagram that indicates the location and contents of each fixed oil storage container is provided in Appendix H. The facility diagram identifies the location of and marks as “exempt” underground tanks that are otherwise exempted from the requirements of this part under §112.1(d)(4).

Note: The facility also has two 55-gallon drums of canola oil at Centre Marketplace (Building 31E) and one 55-gallon drum of canola oil at the Breezeway Food Court (Building 8). Since both of these are stored inside buildings away from drains, they do not pose a significant threat to navigable waters. There are no other mobile oil storage containers in excess of 55 gallons on campus.

2.7 Drainage Pathway and Proximity to Navigable Waters
Stormwater from Florida Atlantic University flows to drainage ditches and stormwater drains. The topography of the campus is generally flat, with slight-to-moderate, localized, surface elevation variations in proximity to buildings, landscaping, and paved areas. On the eastern portion of the campus, the surface flow direction is generally easterly, towards the El Rio Canal, which runs along the entire eastern perimeter of the campus. The facility diagram, provided in Appendix H, provides additional surface flow information.

The university’s storage tanks, bulk containers, machinery, hydraulic elevators, and other oil-containing equipment are not typically located near floor drains that empty into the storm sewer. In some cases, storage tanks, transformers and grease traps are located in areas that have pathways that may eventually reach storm sewers in the event of a slow, prolonged or sudden, catastrophic release; however, historically, these have proven to be unlikely failure scenarios.

Data sheets for each of the university’s regulated storage tanks are included in Appendix J of this SPCC. These sheets describe the ground surface features adjacent to the tanks, including topographical information and distance and direction to nearby storm drains. Note: All dimensions provided on the data sheets are approximate.

2.8 Facility Spill History
FAU’s Boca Raton campus has not had any spill events in the past five years in excess of 42 gallons of oil. Vehicle accidents on campus have resulted in several small spills, generally a few quarts in magnitude, to impermeable road surfaces. In all of these cases, the spills were cleaned up immediately and there were
no discharges to the environment. Waste from cleanup activities was properly disposed by the University’s hazardous waste disposal vendor.

3 Discharge Notification

3.1 Notification Responsibility
The person discovering a release of oil from a container, tank or operating equipment must initiate certain actions immediately, which include reporting the release. Notification requirements vary depending on the nature of the spill and whether the spill has resulted in fire or injury.

3.2 Spills That Do Not Require Notification
Incidental spills of oil may be immediately cleaned up by FAU personnel if the following conditions are met:

1. The spill has not resulted in a release to the environment, which includes but is not limited to permeable ground, drainage areas, surface water, drains, and sewers;
2. The spill poses no threat to human health, and is not a fire or explosion hazard;
3. Appropriate spill response materials are readily available (spill kits or other absorbent materials);
4. Those involved with the cleanup have, and understand how to use, appropriate personal protective equipment (PPE);
5. Those involved with the cleanup are familiar with the hazards posed by the spilled material;
6. The spill is limited in size (no more than a few gallons), readily stoppable, and easily contained.

Spills that meet the criteria described above do not require notification to EH&S or any additional external notifications.

Waste from an incidental spill, including any contaminated debris, from cleanup should be containerized, labeled and staged in secondary containment. EH&S may be contacted if assistance is required during small spill cleanup or afterward for assistance in preventing recurrence of the incident.

Contact EH&S at 7-3129 or place a hazardous waste pickup request through the EHS&S website at http://www.fau.edu/facilities/ehs/new-waste-form.php to have waste from spill cleanup collected for proper disposal.

3.3 Spills That Require Initial Notification
For spills that do not meet the conditions of the previous section, initial notification requirements depend on whether or not the spill has resulted in fire or injury:

- **Call 911** For spills or exposures, which result in *fires and/or injuries that require urgent medical attention*, i.e. a rescue squad needs to be dispatched to the scene.
• **Call 7-3129** For spills or exposures *without fires or injuries or with injuries that do not require urgent medical attention.* Note: After hours and on weekends/holidays, call University Police at (561) 297-3500, who will then contact EH&S.

Contact EH&S at 7-3129, immediately after 911 has been called, so that EH&S can be apprised of the situation and can provide assistance with response efforts.

When contacting EH&S, the following information must be provided:

- Your name and the incident location
- Details of the incident including:
 - Type of incident, liquid spill, gas leak, etc.;
 - Type and quantity of hazardous material involved, if known;
 - Type of exposure to personnel, skin or eye contact, inhalation, etc.;
 - Extent of injuries or damage, if any.

In all cases, take the following actions:

- Evacuate the immediate area, or the entire building, if necessary by pulling the fire alarm.
- Keep others out of the area.
- If safe to do so, assist others to safety.

3.4 External Agency Notification

The SPCC Coordinator shall determine if a reportable spill has occurred and shall make required notifications and reports by telephone, and in writing, to the appropriate agencies as soon as practicable, and within any deadlines for such notifications and reports.

Table 3.4-1 provides useful contact numbers for agency notification.

Table 3-1 Federal, State & Local Emergency Contact Numbers

<table>
<thead>
<tr>
<th>Agency</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger to Life or Health:</td>
<td></td>
</tr>
<tr>
<td>University Police (24 hr)</td>
<td>911 or (561) 297-3500</td>
</tr>
<tr>
<td>Boca Raton Fire Department</td>
<td>911</td>
</tr>
<tr>
<td>Immediate Notification Required:</td>
<td></td>
</tr>
<tr>
<td>State Watch Office (24 hr)</td>
<td>(800) 320-0519</td>
</tr>
<tr>
<td>National Response Center (24 hr)</td>
<td>(800) 424-8802 or (202) 267-2675</td>
</tr>
<tr>
<td>Alternate Immediate Contacts:</td>
<td></td>
</tr>
<tr>
<td>U.S. EPA Region IV Spill Reporting Center (24 hr)</td>
<td>(404) 562-8700</td>
</tr>
<tr>
<td>U.S. Coast Guard, Region 7, Sector Miami (24 hr)</td>
<td>(305) 535-4472 or (305) 535-4520</td>
</tr>
<tr>
<td>Subsequent Communications:</td>
<td></td>
</tr>
<tr>
<td>Palm Beach County Emergency Management (24 hr)</td>
<td>(561) 712-6428</td>
</tr>
</tbody>
</table>
3.4.1 Notification Criteria
The need to make external notification is triggered by a discharge that results in any of the following:

1. A violation of state water quality standards
2. Visible film or sheen on the water’s surface (known as the “sheen rule”)
3. Sludge or emulsion deposited below the water’s surface
4. Release of greater than 25 gallons (or potential > 25 gallons) to any surface
5. Response efforts that require additional state or federal assistance.

3.4.2 Whom to Notify
For spills that meet the notification criteria described in the previous section, a notification hierarchy is generally observed. At the federal level, the National Response Center (NRC) serves as a clearinghouse for all of the states. Once notified, the NRC contacts the state’s State Watch Office (SWO), who in turn contacts the district office of the state’s environmental protection agency (Florida Department of Environmental Protection). Other agencies/entities, such as the Coast Guard may also be notified by any of the aforementioned entities in the event a larger scale offshore response is warranted.

Ideally, one call to the NRC should set the chain of proper notifications in motion. Practically, it is up to the SPCC coordinator to make certain the NRC, SWO, and DEP are all properly notified.

3.4.2.1 The National Response Center
Oil discharges that meet any of the notification criteria shall be immediately reported by the SPCC Coordinator to the National Response Center (NRC). The NRC is the federal government’s centralized reporting center, which is staffed 24 hours a day by U.S. Coast Guard personnel. If, for any reason, reporting directly to the NRC is not possible, initial notification can be made to the EPA in Region IV or to the U.S. Coast Guard Marine Safety Office in Region 7.

3.4.2.2 The State Watch Office
The Florida State Watch Office (formerly known as the State Warning Point) must also be immediately notified for any spills that meet the notification criteria, or for any spills that otherwise pose an immediate threat to human health or the environment.

3.4.2.3 The Florida Department of Environmental Protection
The SPCC Coordinator must notify the DEP in writing within 24 hours of the discovery of a discharge, or before the close of the next business day of any release that meets the notification criteria. An initial phone call is not immediately required.
Notification shall be made using the Florida Department of Environmental Protection’s “Discharge Reporting Form”, included in Appendix I.

3.4.3 What Information to Include
When initially reporting a release to the NRC or SWO, the SPCC Coordinator will provide all available, pertinent details about the release, including but not limited to the following:

1. The exact address or location and phone number of the facility;
2. The date and time of the discharge;
3. The type of material discharged;
4. Estimates of the total quantity discharged;
5. The source of the discharge;
6. A description of all affected media;
7. The cause of the discharge;
8. Any damages or injuries caused by the discharge;
9. Actions being used to stop, remove, and mitigate the effects of the discharge;
10. Whether an evacuation may be needed;
11. The names of individuals and/or organizations who have also been contacted;
12. Number and types of injuries (if any);
13. Weather conditions at the incident location;
14. Other information of use to emergency responders; such as, names of responsible parties, vehicle/tanker information (if applicable), and property damage estimates.

3.4.4 Where to Find Additional Assistance
If the spill cleanup is beyond the capabilities of FAU personnel, the SPCC Coordinator will request the assistance of qualified spill response, clean-up, and remediation contractors. Contact information for oil spill response contractors is provided in Table 3.4-2.

Table 3-2 Oil Spill Response Contractors

<table>
<thead>
<tr>
<th>Contractor</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triumvirate Environmental* (24 hr)</td>
<td>(800) 966-9282</td>
</tr>
<tr>
<td>Clean Harbors - Miramar, FL (24 hr)</td>
<td>(800) 645-8265</td>
</tr>
<tr>
<td>SWS Environmental Services - Fort Lauderdale, FL (24 hr)</td>
<td>(877) 742-4215</td>
</tr>
<tr>
<td>CDI Group USA - Fort Pierce, FL</td>
<td>(772) 467-0270</td>
</tr>
</tbody>
</table>

* Triumvirate Environmental handles most of FAU’s hazardous waste disposal needs, and can be called upon to respond to hazardous material releases, including discharges of oil. Other turnkey response contractors are listed in the event additional response capabilities are required. Both additional contractors have land and sea-based oil cleanup capabilities.
4 Discharge Response

4.1 Discovery of a Release

The person discovering a release of oil or a hazardous substance from a container, tank or operating equipment should initiate certain actions immediately.

4.1.1 Initial Response Actions

The following initial response actions should be taken by the discoverer of an oil release, as long as there is no immediate danger to the life and health of the responder posed by the release:

- Extinguish any sources of ignition. Until the material is determined to be non-flammable and non-combustible, all potential sources of ignition in the area should be turned off. Avoid creating sparks or static electricity – do not unplug or turn off electrical equipment or lights.
- Report the release (See Section 3 of this SPCC).
- Evacuate the immediate area, or the entire building, if necessary by pulling the fire alarm.
- Keep others out of the area.
- If safe to do so, assist others to safety.
- Identify the material released.
 - Consult the (Material) Safety Data Sheet ((M)SDS) for the product, which provides information on physical, and health hazards, first aid measures, and what to do in the event of a spill or release. SDSs are available through FAU EH&S.
- Attempt to stop the release at its source. If it is safe to do so, simple measures such as closing a valve, pushing an emergency stop button, or up righting/rotating a container to prevent further release of the material can be attempted. Assure that no danger to human health exists first.

4.1.2 Containment of a Release

If oil or a hazardous substance is released to the environment, it is crucial that the material be contained as quickly as possible. The following actions may be taken by appropriately trained and equipped personnel at the University or from outside organizations:

1. **Stop the release at the source.** If the source of the release has not been previously found and stopped, EH&S and/or the Boca Raton Fire Department Hazardous Materials response unit, will determine, if special protective equipment is necessary to approach the release area, or if assistance is required to stop the release.

2. **Contain the material released into the environment.** Following proper safety procedures, the spill should be contained using appropriate spill materials such as absorbent pads & socks, non-sparking tools, storm drain covers, plastic sheeting, etc.

 See Table 4-1 below for a list of the spill response equipment that is available at FAU in the EH&S office in Building 69 and in the Hazardous Waste Storage Facility in Building 85. Mobile spill kits are also available for immediate response to smaller-scale spills or leaks. These kits are
located in Room 109 of Building 85. The content list for these kits is provided in Table 4-2 below.

If a release occurs from a tank that is located in close proximity to a storm drain (see Appendix J for tank-specific information), the drain must be bermed or blocked off as part of initial containment efforts. This can be done by completely surrounding the drain with impermeable material, or by covering the drain with a liquid tight cover.

Note: Additional supplies might also be available for any given response; the items in the tables should be considered the minimum amount on hand at any time. Additional supplies such as oil dry, sand bags, and absorbent booms or pads are also frequently kept at Campus Utilities, located in Building 5.

3. **Recover or clean up the material spilled.** As much material as possible should be recovered and reused when possible. Material which cannot be reused must be properly containerized, labeled, and disposed of properly. Every effort should be made to prevent the mixing of hazardous and non-hazardous materials in order to reduce disposal costs.

4. **Decontaminate tools and equipment used in cleanup.** Even if tools and equipment are dedicated only to cleanup efforts, they must be decontaminated before replacing them in the spill control kit. Wastes generated from decontamination efforts must be disposed of properly along with the wastes generated from the spill cleanup.

5. **Arrange for proper disposal of any waste material.** The waste material from the cleanup and decontamination of tools and equipment must be subjected to a hazardous waste determination by FAU EH&S. Representative sampling and analysis may be necessary to make this determination. The waste must be transported and disposed of in compliance with all applicable laws and regulations.

Table 4-1 lists the spill response materials that are kept at the University's Hazardous Waste Facility, Building 85, located behind the Campus Operations Building. Monitoring equipment, which may also be necessary during a response, is kept in the EH&S Main Office in Campus Operations.

These materials are available for immediate mobilization to anywhere on campus and can be transported via golf cart, van, or pickup truck, depending on the size and characteristics of the release.
Table 4-1 Spill Response Equipment and Supplies

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
<th>Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLDG 85</td>
<td>Tyvek chemical resistance coveralls</td>
<td>Protect body from minor chemical hazards</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Safety Goggles</td>
<td>Protect eyes from chemical splashes</td>
</tr>
<tr>
<td>BLDG 85/BLDG 69</td>
<td>Air-purifying respirators half & full-face</td>
<td>Protection from airborne respiratory hazards</td>
</tr>
<tr>
<td>BLDG 85/BLDG 69</td>
<td>Various types of respirator cartridges</td>
<td>Dusts fumes mists, organic vapor/acid gas, etc.</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Nitrile/neoprene gloves</td>
<td>Protect hands from chemical exposures</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Clay Absorbent (i.e. Oil-Dry, Kitty Litter)</td>
<td>Absorbent for organic solvents, oil spills</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Spill control polysorb pillows</td>
<td>All purpose (except Hydrofluoric Acid)</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Vermiculite</td>
<td>Drum packing material, chemical absorption</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Absorbent pads/ paper</td>
<td>Absorb radioactive/biohazardous spills</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Sodium Bicarbonate</td>
<td>Neutralizes acid (base) spills</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Citric acid</td>
<td>Neutralizes base spills</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Sodium Hypochlorite (bleach)</td>
<td>Disinfectant for biohazardous spills</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Sulfur</td>
<td>Reactant/adsorbent for larger mercury spills</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Mercury clean-up kit, including Mercury vacuum</td>
<td>Clean up small mercury spills</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Radiac-wash or equivalent</td>
<td>Radioactive decontamination of smooth surfaces</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Brooms, brushes, & dust pans</td>
<td>Clean up spilled solids</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Drums, buckets, jugs, totes</td>
<td>Containerize wastes for disposal</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Polyethylene bags</td>
<td>Collect and dispose waste</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Impermeable red biomedical waste bags</td>
<td>Dispose biomedical waste</td>
</tr>
<tr>
<td>BLDG 85/BLDG 69</td>
<td>Duct tape</td>
<td>Seal spill waste in bag</td>
</tr>
<tr>
<td>BLDG 85/BLDG 69</td>
<td>ABC & CO2 Fire extinguishers</td>
<td>Fight small fires</td>
</tr>
<tr>
<td>BLDG 85/BLDG 69</td>
<td>Eyewash & Safety Shower</td>
<td>Irrigate eyes/drench body upon chemical exposure</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Alde-x</td>
<td>Neutralize formaldehyde spills</td>
</tr>
<tr>
<td>BLDG 85/BLDG 69</td>
<td>Cell Phones</td>
<td>Emergency communications</td>
</tr>
<tr>
<td>BLDG 85</td>
<td>Hazcat chemical Identification Kit</td>
<td>Chemical Identification</td>
</tr>
<tr>
<td>BLDG 69</td>
<td>Various other instrumentation</td>
<td>Hazard analysis</td>
</tr>
<tr>
<td>BLDG 85/BLDG 69</td>
<td>Building fire alarm system</td>
<td>Notify building occupants to evacuate building</td>
</tr>
<tr>
<td>Qty</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absorbents</td>
<td></td>
</tr>
<tr>
<td>1 roll</td>
<td>Paper towels</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Spill Pads (12" x 12")</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Spill Socks (4’)</td>
<td></td>
</tr>
<tr>
<td>2.5 lb</td>
<td>Sodium bicarbonate</td>
<td></td>
</tr>
<tr>
<td>2.5 lb</td>
<td>Citric acid</td>
<td></td>
</tr>
<tr>
<td>8 lb</td>
<td>Floor Dry</td>
<td></td>
</tr>
<tr>
<td>1 lb</td>
<td>Formalin Spill Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Containers</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Trash Bags (55 gallon)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Clear Bags (15 gallon)</td>
<td></td>
</tr>
<tr>
<td>1 dozen</td>
<td>Ziploc bags (1 gallon)</td>
<td></td>
</tr>
<tr>
<td>1 dozen</td>
<td>Ziploc bags (1 quart)</td>
<td></td>
</tr>
<tr>
<td>1 dozen</td>
<td>Wire tie closures</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Red bio bags (37” x 48")</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Red bio bags (25” x 35”)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sharps container (1 quart)</td>
<td></td>
</tr>
<tr>
<td>1 roll</td>
<td>Duct tape</td>
<td></td>
</tr>
<tr>
<td>1 roll</td>
<td>Masking tape</td>
<td></td>
</tr>
<tr>
<td>1 roll</td>
<td>Red Danger tape</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Plastic tote (large)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diagnostic Tools</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DOT Emergency Response Guidebook</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>NIOSH Pocket Guide to Chemical Hazards</td>
<td></td>
</tr>
<tr>
<td>1 box</td>
<td>pH test strips</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PPE</td>
<td></td>
</tr>
<tr>
<td>1 box</td>
<td>Nitrile gloves (large)</td>
<td></td>
</tr>
<tr>
<td>2 pair</td>
<td>Chemical resistant gloves (large)</td>
<td></td>
</tr>
<tr>
<td>2 pair</td>
<td>Goggles (unvented)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Tyvek suits (xx large)</td>
<td></td>
</tr>
<tr>
<td>5 pair</td>
<td>Booties</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material Handling</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Tong or forceps (medium - 6")</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dustpan</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Brush</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disinfectants</td>
<td></td>
</tr>
<tr>
<td>16 oz</td>
<td>Steris Staphene aerosol spray</td>
<td></td>
</tr>
<tr>
<td>8 oz</td>
<td>Instant hand sanitizer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>First Aid</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>First aid kit (small)</td>
<td></td>
</tr>
<tr>
<td>32 oz</td>
<td>Eyewash bottle/solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Supplies</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Clipboard</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Notebook</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Copy of Chem Response Guide</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Copy of MSDS</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Permanent maker (Sharpie)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Flashlight</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Safety Scissors</td>
<td></td>
</tr>
</tbody>
</table>
4.1.3 Debriefing and Review of the SPCC Plan
As soon as possible, after the release has been cleaned up, appropriate personnel from the University and any outside agencies or contractors involved shall meet to review spill response efforts. Where deficiencies are found, the SPCC Plan shall be revised and amended.

4.1.4 Disposal of Recovered Materials
FAU will properly dispose of recovered materials generated from the cleanup of any discharge or spill. FAU EH&S will perform a hazardous waste determination on any recovered materials, which may require representative sampling and analysis of the materials. To the extent possible, and where feasible, free product will be recovered for recycling or reclamation. In all cases, recovered materials will be transported and disposed of in compliance with applicable laws and regulations, utilizing properly permitted transporters and disposal facilities.

5 Potential Discharge Volumes and Flow Directions
Based on storage container typical mode of use, storage location, and general area usage at this facility, Table 5-1 describes reasonable failure mode, direction of flow, predicted flow rates, and most likely quantity of oil discharged. Supporting calculations are provided directly below.

The probable flow directions are related to surface topography and the location of structures, parking lots, roadways, landscaping, and other property improvements in the local area of probable failure, and are shown on the facility diagram for this SPCC, located in Appendix H and on the SPCC data sheets for each tank, located in Appendix J.

Note: Per the 2008 SPCC Amendments, the values in the table below are estimates for typical failure mode and most likely quantity discharged. These values are not representative of a catastrophic loss scenario, which can result in gradual to nearly instantaneous discharges up to the entire tank volume.

Table 5-1 Potential Discharge Volumes & Flow Directions

<table>
<thead>
<tr>
<th>Storage Mode</th>
<th>Typical Failure Mode</th>
<th>Direction of Flow</th>
<th>Predicted Flow Rate</th>
<th>Most Likely Quantity Discharged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulated ASTs</td>
<td>Overflow during tank loading</td>
<td>Tank fill point to adjacent ground surface then dependent on topography</td>
<td>55 gpm</td>
<td><25 gallons^a</td>
</tr>
<tr>
<td>Non-Regulated ASTs</td>
<td>Overflow during tank loading</td>
<td>Tank fill point to adjacent ground surface then dependent on topography</td>
<td>55 gpm</td>
<td><25 gallons^a</td>
</tr>
<tr>
<td>Gas Tank</td>
<td>Overflow during tank loading</td>
<td>Onto adjacent, impermeable ground surface then to storm drain</td>
<td>55 gpm</td>
<td><25 gallons^a</td>
</tr>
<tr>
<td></td>
<td>Event</td>
<td>Location Description</td>
<td>Leakage Rate</td>
<td>Quantity</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------</td>
<td>--</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Food Oil Drums</td>
<td>Leak</td>
<td>Onto ground in building where contained</td>
<td>2.38 gpm</td>
<td>0 gallons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(contained in building)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Food Oil Tank</td>
<td>Leak</td>
<td>Onto adjacent, impermeable ground surface then to storm drain</td>
<td>3 gpm</td>
<td><200 gallons</td>
</tr>
<tr>
<td>Waste Oil Tank</td>
<td>Overflow when manually adding to tank</td>
<td>Onto adjacent, impermeable ground surface then to grassy area</td>
<td><1 gpm</td>
<td>< 1 gallon, incidental spill</td>
</tr>
<tr>
<td>Motor Oil & Hydraulic Fluid Tanks CO69</td>
<td>Overflow during annual filling</td>
<td>Onto adjacent, impermeable ground surface then to grassy area</td>
<td>40 gpm</td>
<td>< 5 gallons</td>
</tr>
<tr>
<td>Elevators</td>
<td>Leak</td>
<td>Into elevator closet</td>
<td><1 gpm</td>
<td>0 gallons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(contained in building)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformers</td>
<td>Rupture</td>
<td>To concrete pad and then adjacent ground surface (grass) and then to stormwater drain</td>
<td>Varies depending on location of rupture</td>
<td>Up to entire volume of transformer mineral oil, depending on location of rupture</td>
</tr>
</tbody>
</table>

A. AST Overflow Quantity:

Assume a PTO-driven pump with a 50-80 gpm nominal and 120 gpm maximum flow rate. In likely scenario, discharge occurs while driver is pumping at approximately 55 gpm and tank maximum fill point has been exceeded. Spill bucket is attached to tank and has 3.5 gallons capacity prior to overflow. Assume spill proceeds unhindered for thirty seconds until noticed and stopped.

\[V_{\text{Overflow}} = 55 \text{ gpm} \times 0.5 \text{ min} - 3.5 \text{ gallons} = 24.0 \text{ gallons} \]

B. Food Oil Drum Leak Flow Rate:

Assume canola oil at 25°C with discharge coefficient of 0.45 per the findings of NOAA Technical Memorandum NOS OR&R 6. Use the orifice flow equation to approximate flow through a crack equivalent to a one-eighth of a square inch at the bottom of a full drum, initially filled with canola oil at a maximum height above ground surface of 34.5 inches.

\[Q_{\text{Leak}} = 25AC_Dh_p^{0.5} \]

\[C_D = \text{Discharge coefficient}; \quad h_p = \text{fluid head} = 34.5 / 12 = 2.875 \text{ ft}; \quad A = \text{area in square inches} \]
Q_{\text{Leak}} = 25 \times 0.125 \times 0.45 \times 2.875^{0.5} = 2.38 \text{ gpm}

C. Grease Trap Flow Rate and Discharge Quantity:

Grease trap fluid height when filled is approximately 30”. Assume leak from only one tank as likely failure scenario. Probable discharge amount from leak is a function of time until the leak is discovered, which is highly variable. Assume grease trap area is observed once in an hour. Use the orifice flow equation to approximate flow through a crack equivalent to a one-eighth of a square inch at the bottom of the trap. Use a discharge coefficient approximation of 0.6 for waste grease seeping through a sharp edged crack in the grease trap.

Q_{\text{Leak}} = 25AC_{Dh_{p}}^{0.5}

\quad C_{D} = \text{Discharge coefficient}; \quad h_{p} = \text{fluid head} = 30.0 / 12 = 2.5 \text{ ft}; \quad A = \text{area in square inches}

Q_{\text{Leak}} = 25 \times 0.125 \times 0.60 \times 2.5^{0.5} = 3 \text{ gpm}

V_{\text{Leak}} = 3 \text{ gpm} \times 60 \text{ min} = 180 \text{ gallons}

D. Motor Oil & Hydraulic Fluid Overflow Quantity:

Assume overflow is momentary (5 seconds) due to the proximity of offices and typical presence of maintenance personnel in area. Tank is filled from tanker using PTO-driven pump at approximate flow rate of 40 gpm.

V_{\text{Overflow}} = 40 \text{ gpm} \times (5/60 \text{ min}) = 3.33 \text{ gallons}

6 Containment and Diversionary Structures

Florida Atlantic University makes every effort to prevent the discharge of oil to the environment. Discharge prevention measures include, but are not limited to, the following:

1. Use of secondary containment and drainage control;
2. Monitoring of fuel transfers;
3. Inspection and maintenance of tanks;
4. Proper storage of oil-containing containers;
5. Training of appropriate personnel.

6.1 Aboveground Storage Tanks

All above ground petroleum oil storage tanks have double-walled secondary containment systems. The University’s regulated above ground storage tanks are also equipped with leak detection systems that include electronic interstitial monitoring, sight gauges and/or manual drain valves. Most of the University’s aboveground storage tanks are used for generator systems and are of the “belly tank” configuration below the generator, with no external fuel piping.
6.2 Underground Storage Tanks
FAU’s only underground tank is of double-walled, fiberglass construction, with a storage capacity of less than 30,000 gallons, used for the sole purpose of storing heating oil for consumptive use on the premises. This tank provides back-up fuel storage for the operation of the university’s dual-fuel boiler system.

The tank is exempt from the requirements of Florida Administrative Code 62-761, Underground Storage Tanks, per 62-761.300(e), and is also exempt from SPCC requirements, per §112.1(d)(4). Note: The referenced subsection of the SPCC requirements cross-references 40 CFR 280; under which, fuel oil storage tanks are not defined as underground storage tanks for the purposes of regulation (§280.12).

6.3 Transformers
Some University-owned electrical transformers are located outside on cement or gravel pads. These transformers typically lack secondary containment; however, oil loss would result in equipment failure that would be immediately detected, and such oil loss would not result in a significant discharge from the facility to navigable waters.

Sorbent materials, such as oil dry, spill pillows and spill socks are available and can be deployed from the Waste Storage Facility in Building 85 for immediate response to any transformer release. A list of all of the oil-containing transformers on the Boca Raton campus is provided in Appendix F.

Note: Transformers that are not owned by the University are the property of Florida Power and Light (FP&L). These transformers have similar characteristics and installations to University-owned transformers. Initial response to releases for these transformers would also be taken by FAU personnel to prevent contamination to FAU property; however, FP&L would ultimately be responsible for any further corrective actions.

6.4 Elevators
All hydraulic elevators at the University are located indoors; as such, any releases of hydraulic fluid attributed to a leak or cylinder blowout would be contained in the elevator’s secured vault area. These areas have concrete walls and concrete floors and are large enough to contain any release inside the building. A list of all of the hydraulic elevators on the Boca Raton campus is provided in Appendix F.

6.5 Other Equipment
Day tanks, hydraulic systems, switch gears, and other oil-containing equipment and machinery are all contained within building structures that serve as secondary containment. These systems contain small amounts of petroleum products and do not fall under the auspices of this SPCC; however, the same precautions and preventative measures that are observed for larger equipment are also observed for these systems.
7 Practicability of Secondary Containment
Florida Atlantic University uses double-walled, above ground storage tank systems for secondary containment. Spill equipment is readily available for response to any oil releases, and is the University's preferred method to prevent discharged oil from reaching navigable waters.

This overall approach is practicable, effective, and has been successfully utilized at other major universities throughout the country.

8 Inspections, Tests and Records

8.1 Regulated Storage Tanks
In the State of Florida, aboveground petroleum oil storage tanks with a capacity greater than 550 gallons and underground petroleum oil storage tanks with a capacity greater than 110 gallons are required to maintain records of the performance of monthly release detection on file for a minimum of two years.

Release detection is accomplished by a combination of audible and visual alarms and visual inspection of tank systems. Visual inspection is the preferred method of inspection for ASTs on all FAU campuses and is a standard practice at many universities. FAU's monthly visual inspection form is provided in Appendix K of this SPCC.

Note: FAU maintains tank inspection records for three years to comply with the requirements of §112.7(e).

8.2 Non-Regulated Storage Tanks
FAU has a number of smaller aboveground petroleum oil storage tanks and an underground heating oil tank (<30,000 gallons), which are not regulated by the State of Florida. Most of the smaller ASTs are associated with emergency generator systems. These tanks are inspected on an annual basis (using the same form used for regulated tanks), or whenever material repairs are made. FAU maintains these records for three years, as well, to comply with the requirements of §112.7(e).

8.3 Other Oil-Containing Tanks, Equipment, and Machinery
FAU also has a number of day tanks, hydraulic systems, switch gears, transformers, etc. Many of these have oil capacities of less than 55 gallons or are considered oil-filled electrical, operating, or manufacturing equipment. The SPCC regulations do not apply to containers with a capacity of less than 55 gallons, and oil-filled electrical, operating, or manufacturing equipment are not considered bulk storage containers.

Loss of oil from these systems results in equipment failures that are immediately detectable and would not result in a discharge from the facility. FAU inspects such equipment as specified by manufacturers; however, records are not retained unless required.
9 Personnel Training and Discharge Prevention Procedures

9.1 Personnel Training
Oil handling personnel at FAU are provided training, which, at a minimum, includes the following topics:

- The operation and maintenance of equipment to prevent discharges;
- Discharge procedure protocols;
- Applicable pollution control laws, rules, and regulations;
- General facility operations;
- The contents of this SPCC Plan.

9.2 Discharge Prevention Briefings
Discharge prevention briefings will be scheduled and conducted for oil-handling personnel at least once a year. These briefings will highlight and describe any known discharges or failures, malfunctioning components, and any recently developed precautionary measures.

Discharge prevention briefings may be conducted at the same time as personnel training to provide pertinent information about lessons learned. A copy of training and meeting records is provided in Appendix L.

9.3 General Discharge Prevention Procedures
FAU will take the following measures to reduce the likelihood of a discharge of oil to the environment:

- Require fueling operations to be continuously attended during transfers.
- Inspect all regulated aboveground storage tanks monthly using the checklists included in Appendix K.
- Inspect all above ground piping and valves when aboveground storage tanks are inspected.
- Promptly correct any oil leaks from tanks, piping, valves, etc.
- Promptly remove and properly dispose of any materials contaminated as a result of leaks or spills.
- Locate all future oil storage tanks and 55-gallon drums away from drains, waterways, and flood prone areas.
- Provide all oil storage containers with secondary containment.
- Maintain fully-stocked spill kits at the hazardous waste facility for immediate campus deployment in the event of a spill.
- Post instructions and phone numbers regarding the reporting of a spill to the National Response Center and the State Watch Office in the offices of Environmental Health & Safety.

9.4 Truck Loading and Offloading Operations
Throughout the year, FAU receives tanker trucks and other supply vehicles for various operations that include the following:

- Refilling the gasoline AST located behind the Campus Operations Building;
• Removing used oil from the AST in the Campus Operations maintenance area;
• Removing waste grease from the waste food oil tanks located at the Center Market Place and Breezeway Food Courts;
• Refilling the hydraulic fluid and motor oil storage tanks in the Campus Operations maintenance area;
• Refueling all of the ASTs that supply the University’s emergency generators.

All suppliers must meet the minimum requirements and regulations for tank truck loading/unloading established by the U.S. Department of Transportation.

All truck offloading operations are to be observed by FAU personnel, without exception.

9.4.1 Preparation for Offloading
FAU personnel have several duties that must be carried out prior to the offloading of petroleum or food oil containing product into storage tanks from tankers or other delivery vehicles. These include the following:

1. Ensure driver is parked on a level surface. If the parking surface has an incline, wheel chocks must be used for the duration of the offloading operation.
2. Ensure that drivers set parking brakes.
3. Verify tanker contents to ensure the correct product will be placed in the receiving storage tank.
4. Observe the hookup of hoses and confirm adequate spill response materials are available.
5. Verify the storage tank product level and free capacity prior to offloading.
6. If the receiving tank is equipped with a secondary containment drain valve or plug, make certain it is closed.
7. When offloading gasoline, ensure that a proper vehicle ground connection is made first before any other connection is made, and then connect the vapor recovery line to the storage tank.

9.4.2 Precautions While Offloading
Once offloading has begun, FAU personnel should monitor the liquid level in the tank to ensure an overflow does not occur. Also, make certain the driver stays within the line of sight of the offloading operation so a quick response can be initiated, which may include shutting off the pump, should any problems arise. Make certain, when offloading gasoline, that the tanker remains grounded at all times – the grounding line should not be removed until the very end of the offloading operation.

9.4.3 Precautions Prior to Departure
Once offloading has been completed, the total volume of product transferred to the storage tank should be confirmed. The area around the tank should be briefly surveyed to ensure there has been no overflow or leaks during the offloading process. An FAU employee must be present to observe the disconnecting of all hoses and fittings.

The driver must provide a means for collecting product lost in the disconnecting process. A bucket may be provided by FAU for this purpose if the driver does not have one available. In the case of a gasoline transfer, only after the transfer hose has been disconnected from the storage tank and the area has
been properly surveyed for releases shall the vapor recovery hose and grounding line be disconnected (in that order, as appropriate, depending on the product offloaded).

Once the offloading process has been completed and the tanker has been completely disconnected from the storage tank, FAU personnel should do one final inspection to ensure the tank is secure and leak free and that the supply vehicle is not leaking.

9.4.4 Truck Loading and Offloading Emergencies
Truck valve(s) should be used to shut off product in the event of a release, regardless of the cause. Under no circumstances should the driver attempt to start and/or move the vehicle in an emergency situation without clearance from FAU EH&S personnel.

In the event of an uncontrolled release, all efforts should be made to minimize and contain the release. Offloading should be shut down immediately and the discharge response procedures described in Section 4 of this SPCC shall be implemented.

In the event of a catastrophic release from a tanker failure during oil transfer, trained facility personnel would implement necessary first response control measures, including deployment of booms, pigs, socks, sand bags, and any other appropriate, available materials to divert and contain the spill, until an emergency response contractor with large-scale recovery capabilities arrives.

9.5 Secondary Containment for Vehicles
Loading and offloading activities performed at the University include the offloading of gasoline fuel, hydraulic fluid, and motor oil from tanker trucks with their own pumping systems, fueling of university vehicles at the fueling station, and the removal of waste oil. Secondary containment is not provided at these operations; however, spill response materials are maintained nearby in Building 85 in sufficient quantities to contain a release, should one occur.

10 Security
While the University may be closed to the public in certain rare circumstances (i.e. natural disasters, civil unrest), essential personnel including, but not necessarily limited to police officers and utility plant workers are on duty 24 hours per day, every day. The University Police Department provides constant patrol of the campus and helps ensure oil storage areas remain secure.

10.1 Storage Tank Access
Major petroleum oil storage tanks are located within locked enclosures. The vehicle refueling tank is also located in the parking lot behind the University Police Department. Vehicle refueling is only done by fleet maintenance personnel or University police officers. Starter controls for fuel pump dispensers remain locked at all other times. Access to these storage tanks is limited to authorized personnel.
10.2 Elevators and Transformers Access
Elevator closets and transformers are always kept locked to prevent access by unauthorized personnel. The Utilities Department has access to all elevator closets in the event of a hydraulic fluid release or other emergency situation.

10.3 Flow Valve Access
There are no flow valves on any containers or tanks that would allow direct outward flow of tank contents, causing a release to the environment.

10.4 Starter Control Access
Starter controls on the gasoline AST are accessible only to authorized personnel and shall be manually operated by FAU personnel.

10.5 Campus Lighting
FAU facility lighting is adequate to assist in the discovery of discharges occurring during hours of darkness by operating/non-operating personnel as well as the prevention of discharges occurring through acts of vandalism. Over 95% of the campus is lit in the evening, including all critical oil storage and equipment areas.

11 Facility Drainage
FAU’s Boca Raton campus does not utilize diked storage areas; therefore, 112.8(b)(1) and (b)(2) are not applicable.

Per the requirements of §112.8(b)(3), facility drainage systems from undiked areas with a potential for a discharge (such as where piping is located outside containment walls or where tank truck discharges may occur outside the loading area) must be designed to flow into ponds, lagoons, or catchment basins designed to retain oil or return it to the facility.

Most of the storage tanks in use at the Boca Raton campus are configured as generator belly tanks, with no external piping. Loading for these tanks takes place in close proximity to the tank, away from storm drains. In the event of a tank overflow during filling, the most likely failure scenario (see Section 5), the flow of product would be limited by the landscaping and building features in close proximity to the tank and would not reach navigable waters.

The undiked tank located at the Campus Operations (Tank #20) is used for vehicle refueling. This tank is double-walled and loading occurs only in the designated loading area. This tank has gas and diesel dispensing pumps located adjacent to the tank on the north side. There is no oil-containing piping that runs from the tank to any other location on campus. A tank truck discharge may occur but, as in the case of the generator tanks, spilled product would be constrained to the area around the tank. Free product would not reach the storm sewer located many yards away in the parking area, under the most likely failure scenario (see Section 5).
12 Bulk Storage Containers / Secondary Containment

Containers used for the bulk storage of oil at FAU are constructed of materials that are compatible with the material stored and the conditions of storage such as pressure and temperature. All bulk storage containers are equipped with secondary containment capable of holding 110 percent of the volume of the primary container (i.e. double-walled tanks).

All FAU bulk storage containers are engineered in accordance with good engineering practice to avoid discharges. Larger bulk storage containers are equipped with high level alarms, secondary containment alarms, and overfill protection. In all cases, a person is required to be present when containers are being filled.

13 Inspections

Regulated storage tanks are visually inspected monthly and monitored for leak detection per Florida Administrative Code 62-761. Monthly visual inspection of ASTs has proven to be sufficiently protective to identify any tank problems that could eventually result in a release, and is a mode and method of inspection that is in common use by universities.

Storage tanks are also inspected any time material repairs are made to the tank. The outside of the tanks are checked for signs of deterioration, discharges, or accumulation of oil on the tank or adjacent generator casing (as appropriate) as a part of the monthly inspection. Any necessary corrections based on the findings of the inspection are completed in a prompt manner.

As also stated in Section 8 of this SPCC, a copy of the form used to complete storage tank inspection is included in Appendix K of this SPCC. Inspection records are kept for three years.

14 Leakage Control

Per the requirements of §112.8 (c)(7), the facility must control leakage through defective internal heating coils by monitoring the steam return and exhaust lines for contamination from internal heating coils that discharge into an open watercourse, or pass the steam return or exhaust lines through a settling tank, skimmer, or other separation or retention system.

FAU does not have heating coils that discharge into an open watercourse, so this requirement is not applicable for this SPCC Plan.

15 Overfill Prevention Systems

All tanks and bulk container installations have been made in accordance with good engineering practice to avoid discharges. All regulated oil storage tanks are equipped with a fast response system for determining the liquid level of each bulk storage container. Direct vision gauges are monitored during the filling of bulk storage containers. Liquid level sensing devices are inspected as part of the University’s ongoing, monthly tank inspection program.
16 Effluent Treatment Facilities
Per the requirements of §112.8 (c)(9), effluent treatment facilities must be observed frequently enough to detect possible system upsets that could cause a discharge. The University does not have effluent treatment facilities, so this requirement is not applicable for this SPCC Plan.

17 Visible Discharges
FAU will promptly correct visible discharges which result in a loss of oil from containers, including but not limited to seams, gaskets, piping, pumps, valves, rivets, and bolts. The university will also make every effort to keep areas around oil storage containers clean and accessible at all times.

If oil is discovered in secondary containment, an investigation will be conducted to determine whether the situation is the result of a leak or if it can be explained otherwise. The oil will be removed and properly disposed. The cause of the discharge into secondary containment will be promptly corrected, and any necessary tank system repairs will be made. An Incident Notification Form or Discharge Report Form will be filed with the Department of Environmental Protection, using the form(s) provided in Appendix I, if necessary.

18 Mobile and Portable Containers
Mobile and portable containers will be kept indoors in areas away from floor drains. In the event these types of containers are used outside, they will be placed on spill containment pads and any precipitation will be promptly removed.

All spill containment pads will be of sufficient capacity to hold the full volume of the largest container in use with ample freeboard in the event of precipitation while the containment pad is holding product, generally this will be accomplished by using spill containment pads that have at a minimum 10% excess capacity.

19 Transfer Operations, Pumping, and In-Plant Processes
Aboveground and underground piping systems at FAU run very short distances, and in many cases, are integral to emergency generators (i.e. generator directly above fuel tank). Other aboveground piping systems generally run a few feet from the tank into a building where the emergency generator is housed.

Underground piping at FAU is double-walled fiberglass construction with leak detection and meets the corrosion protection standards for piping in 40 CFR Part 280. Aboveground piping systems are visually inspected in conjunction with the inspection of bulk containers. Integrity and leak testing of buried piping is done at the time of installation, modification, construction, relocation, or replacement.

Due to the limited and protected nature of piping systems at FAU, vehicles will not endanger aboveground piping or other oil transfer operations.
Florida Atlantic University’s Spill Containment, Control, and Countermeasure (SPCC) Plan has been reviewed and certified by a registered professional engineer per the requirements of §112.3(d).

I hereby attest that:

- I am familiar with the requirements of 40 CFR 112;
- I or my agent has visited and examined:

 Florida Atlantic University
 777 Glades Road
 Boca Raton, Florida 33431;

- The SPCC Plan has been prepared in accordance with good engineering practice, including consideration of applicable industry standards, and with the requirements of 40 CFR 112;
- Procedures for required inspections and testing have been established; and
- The SPCC Plan is adequate for the facility.

Professional Engineer (PE): __________________________________ (Print or type name.)

Signature: ___________________________ Date: __________________

PE registration number: ___________________________ State(s): ___________________________
Appendix B – Record of Review and Amendment & Log Sheet

I have completed a review and evaluation of the SPCC Plan for Florida Atlantic University on ________________, and □ will □ will not amend the Plan as a result.

(Date) (Check one)

Complete this section only if an amendment is required.

Description of Amendment:

The amendment □ is □ is not a technical amendment to the Plan.

(Check one)

If the amendment is a technical amendment to the Plan, a registered Professional Engineer must complete the Professional Engineer’s Certification below.

**

SPCC Plan Amendment Review and Certification by Professional Engineer
(To be completed only if a technical amendment to the Plan is required.)

By means of this certification, I attest that:

• I am familiar with the requirements of 40 CFR 112;
• I or my agent has visited and examined:
 Florida Atlantic University
 777 Glades Road
 Boca Raton, Florida 33431;
• The SPCC Plan has been prepared in accordance with good engineering practice, including consideration of applicable industry standards, and with the requirements of 40 CFR 112;
• Procedures for required inspections and testing have been established; and
• The SPCC Plan is adequate for the facility.

Professional Engineer (PE): ________________________________ (Print or type name.)

Signature: ________________________________ Date: ________________

PE registration number: _____________________________ State(s): ______________________
Table 19-1 Amendment Log Sheet

<table>
<thead>
<tr>
<th>Entry #</th>
<th>Review or Amendment Description</th>
<th>Amendment Date</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Florida Atlantic University is committed to the prevention of discharges of oil to navigable waters and the environment.

This Plan has the full approval of management at a level of authority required to commit the necessary resources to fully implement it.

Responsible Officer: __Dennis Zabel________________ (Print or type name.)

Title: _Director, EH&S_________________

Signature: _____________________________ Date: ___________________
Appendix D – Facilities, Procedures, Methods or Equipment Not Yet Operational

At the time of execution of this SPCC, all facilities, procedures, methods, and equipment described herein were fully operational. In the event this should change in the future, this Appendix will be amended accordingly.
Appendix E – Certification of Applicability of the Substantial Harm Criteria

Facility Name: Florida Atlantic University Facility Address: 777 Glades Road, Boca Raton, FL 33431

1. Does the facility transfer oil over water to or from vessels and does the facility have a total oil storage capacity greater than or equal to 42,000 gallons?

 Yes ___ No _X_

2. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and does the facility lack secondary containment that is sufficiently large to contain the capacity of the largest aboveground oil storage tank plus sufficient freeboard to allow for precipitation within any aboveground oil storage tank area?

 Yes ___ No _X_

3. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in Attachment C–III to this appendix or a comparable formula 1) such that a discharge from the facility could cause injury to fish and wildlife and sensitive environments? For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA's “Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments” (see 40 CFR 112, Appendix E, section 13, for availability) and the applicable Area Contingency Plan.

 Yes ___ No _X_

4. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in Attachment C–III of 40 CFR 112, Appendix C or a comparable formula) such that a discharge from the facility would shut down a public drinking water intake?

 If a comparable formula is used, documentation of the reliability and analytical soundness of the comparable formula must be attached to this form.

 For the purposes of 40 CFR part 112, public drinking water intakes are analogous to public water systems as described at 40 CFR 143.2(c).

 Yes ___ No _X_

5. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and has the facility experienced a reportable oil discharge in an amount greater than or equal to 10,000 gallons within the last 5 years?

 Yes ___ No _X_

Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

___________________________ ____________________________
Name (please type or print) Signature

____________________________ ____________________________
Title Date
Appendix F – Summary of Oil Storage Locations

Oil Storage Location Summary For Containers >= 55 gallons

BULK OIL STORAGE

<table>
<thead>
<tr>
<th>Bidg #</th>
<th>Tank #</th>
<th>Bidg Name</th>
<th>Max Gal</th>
<th>Contents</th>
<th>Sp Gr</th>
<th>Max Lbs</th>
<th>A/U</th>
<th>Secondary Containment</th>
<th>Approximate GPS Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Gen Classroom S</td>
<td>400</td>
<td>Diesel</td>
<td>0.87</td>
<td>2899</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.103</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Library</td>
<td>250</td>
<td>Diesel</td>
<td>0.87</td>
<td>1812</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.105</td>
</tr>
<tr>
<td>8W</td>
<td></td>
<td>Student Health Svs</td>
<td>400</td>
<td>Diesel</td>
<td>0.87</td>
<td>2899</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.103</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Lift Station</td>
<td>175</td>
<td>Diesel</td>
<td>0.87</td>
<td>1268</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.105</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>Union</td>
<td>200</td>
<td>Diesel</td>
<td>0.87</td>
<td>1449</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.107</td>
</tr>
<tr>
<td>35A</td>
<td></td>
<td>Research Spt Fac</td>
<td>475</td>
<td>Diesel</td>
<td>0.87</td>
<td>3442</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.103</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>Gym</td>
<td>250</td>
<td>Diesel</td>
<td>0.87</td>
<td>1812</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.109</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>S&E</td>
<td>250</td>
<td>Diesel</td>
<td>0.87</td>
<td>1812</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.102</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>Social Science</td>
<td>250</td>
<td>Diesel</td>
<td>0.87</td>
<td>1812</td>
<td>A</td>
<td>Single-walled tank</td>
<td>80.101</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>Education</td>
<td>540</td>
<td>Diesel</td>
<td>0.87</td>
<td>3913</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.105</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>Performing Arts</td>
<td>400</td>
<td>Diesel</td>
<td>0.87</td>
<td>2899</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.102</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>PS</td>
<td>400</td>
<td>Diesel</td>
<td>0.87</td>
<td>2899</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.102</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>Campus Operations</td>
<td>400</td>
<td>Diesel</td>
<td>0.87</td>
<td>2899</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.097</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>University Towers</td>
<td>130</td>
<td>Diesel</td>
<td>0.87</td>
<td>942</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.104</td>
</tr>
<tr>
<td>81</td>
<td></td>
<td>Pk. Garage 1</td>
<td>250</td>
<td>Diesel</td>
<td>0.87</td>
<td>1812</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.106</td>
</tr>
<tr>
<td>88</td>
<td></td>
<td>Pk. Garage 2</td>
<td>250</td>
<td>Diesel</td>
<td>0.87</td>
<td>1812</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.100</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>Student Support Services</td>
<td>366</td>
<td>Diesel</td>
<td>0.87</td>
<td>2652</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.105</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>COECS</td>
<td>500</td>
<td>Diesel</td>
<td>0.87</td>
<td>3624</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.098</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>Culture & Society</td>
<td>366</td>
<td>Diesel</td>
<td>0.87</td>
<td>2652</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.102</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>Football Stadium</td>
<td>450</td>
<td>Diesel</td>
<td>0.87</td>
<td>3261</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.102</td>
</tr>
</tbody>
</table>

Diesel in Non-Regulated Above Ground Storage Tanks

Diesel Total: 6,702, 48,570

Diesel in Regulated Above Ground Storage Tanks

<table>
<thead>
<tr>
<th>Bidg #</th>
<th>Tank #</th>
<th>Bidg Name</th>
<th>Max Gal</th>
<th>Contents</th>
<th>Sp Gr</th>
<th>Max Lbs</th>
<th>A/U</th>
<th>Secondary Containment</th>
<th>Approximate GPS Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>Sanson</td>
<td>2,000</td>
<td>Diesel</td>
<td>0.87</td>
<td>14494</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.103</td>
</tr>
<tr>
<td>22</td>
<td>26</td>
<td>Computer Center</td>
<td>1,700</td>
<td>Diesel</td>
<td>0.87</td>
<td>12320</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.105</td>
</tr>
<tr>
<td>69</td>
<td>20</td>
<td>Campus Ops</td>
<td>3,000</td>
<td>Diesel</td>
<td>0.87</td>
<td>21741</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.097</td>
</tr>
<tr>
<td>71</td>
<td>18</td>
<td>Coll. of Medicine</td>
<td>3,000</td>
<td>Diesel</td>
<td>0.87</td>
<td>21741</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.100</td>
</tr>
<tr>
<td>71</td>
<td>25</td>
<td>Coll. of Medicine</td>
<td>1,000</td>
<td>Diesel</td>
<td>0.87</td>
<td>7247</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.100</td>
</tr>
<tr>
<td>84</td>
<td>23</td>
<td>Nursing</td>
<td>600</td>
<td>Diesel</td>
<td>0.87</td>
<td>4348</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.101</td>
</tr>
<tr>
<td>87</td>
<td>22</td>
<td>Desantis Cntr.</td>
<td>650</td>
<td>Diesel</td>
<td>0.87</td>
<td>4711</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.105</td>
</tr>
<tr>
<td>89</td>
<td>21</td>
<td>Heritage Twrs.</td>
<td>700</td>
<td>Diesel</td>
<td>0.87</td>
<td>5073</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.104</td>
</tr>
<tr>
<td>92</td>
<td>24</td>
<td>Glades Pk. Twrs.</td>
<td>850</td>
<td>Diesel</td>
<td>0.87</td>
<td>6160</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.104</td>
</tr>
<tr>
<td>96</td>
<td>27</td>
<td>COECS</td>
<td>2,200</td>
<td>Diesel</td>
<td>0.87</td>
<td>15944</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.098</td>
</tr>
<tr>
<td>98</td>
<td>28</td>
<td>Innovation Village North</td>
<td>650</td>
<td>Diesel</td>
<td>0.87</td>
<td>4711</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.099</td>
</tr>
<tr>
<td>99</td>
<td>29</td>
<td>Innovation Village South</td>
<td>650</td>
<td>Diesel</td>
<td>0.87</td>
<td>4711</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.099</td>
</tr>
<tr>
<td>102</td>
<td>30</td>
<td>Parliament Hall</td>
<td>555</td>
<td>Diesel</td>
<td>0.87</td>
<td>4022</td>
<td>A</td>
<td>Double-walled tank</td>
<td>80.100</td>
</tr>
</tbody>
</table>
Diesel Total

<table>
<thead>
<tr>
<th>Bldg#</th>
<th>Room#</th>
<th>Bldg Name</th>
<th>Fluid Capacity (gal)</th>
<th>System Type</th>
<th>Sp Gr</th>
<th>**Max Lbs</th>
<th>Stops</th>
<th>Secondary Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>31</td>
<td>Pk. Garage 3</td>
<td>595</td>
<td>Diesel</td>
<td>0.87</td>
<td>4312</td>
<td>A</td>
<td>Double-walled tank</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80.104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26153</td>
</tr>
</tbody>
</table>

Diesel Grand Total

<table>
<thead>
<tr>
<th>Bldg#</th>
<th>Room#</th>
<th>Bldg Name</th>
<th>Fluid Capacity (gal)</th>
<th>System Type</th>
<th>Sp Gr</th>
<th>**Max Lbs</th>
<th>Stops</th>
<th>Secondary Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80.104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180.10</td>
</tr>
</tbody>
</table>

Gasoline Tanks

<table>
<thead>
<tr>
<th>Bldg#</th>
<th>Room#</th>
<th>Bldg Name</th>
<th>Fluid Capacity (gal)</th>
<th>System Type</th>
<th>Sp Gr</th>
<th>**Max Lbs</th>
<th>Stops</th>
<th>Secondary Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>20</td>
<td>Campus Ops</td>
<td>5,000</td>
<td>Gas</td>
<td>0.75</td>
<td>31238</td>
<td>A</td>
<td>Double-walled tank</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80.097</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Food Oil Drums

<table>
<thead>
<tr>
<th>Bldg#</th>
<th>Room#</th>
<th>Bldg Name</th>
<th>Fluid Capacity (gal)</th>
<th>System Type</th>
<th>Sp Gr</th>
<th>**Max Lbs</th>
<th>Stops</th>
<th>Secondary Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td></td>
<td>Center Marketplace</td>
<td>110</td>
<td>Canola Fry Oil</td>
<td>0.92</td>
<td>842.99</td>
<td>A</td>
<td>Active - spill kit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80.106</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Breezeway Food Court</td>
<td>55</td>
<td>Canola Fry Oil</td>
<td>0.92</td>
<td>421.49</td>
<td>A</td>
<td>Active - spill kit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80.103</td>
</tr>
</tbody>
</table>

Food Oil Total

<table>
<thead>
<tr>
<th>Bldg#</th>
<th>Room#</th>
<th>Bldg Name</th>
<th>Fluid Capacity (gal)</th>
<th>System Type</th>
<th>Sp Gr</th>
<th>**Max Lbs</th>
<th>Stops</th>
<th>Secondary Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31238</td>
</tr>
</tbody>
</table>

Hydraulic Fluid

<table>
<thead>
<tr>
<th>Bldg#</th>
<th>Room#</th>
<th>Bldg Name</th>
<th>Fluid Capacity (gal)</th>
<th>System Type</th>
<th>Sp Gr</th>
<th>**Max Lbs</th>
<th>Stops</th>
<th>Secondary Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td></td>
<td>Campus Ops (Transportation)</td>
<td>250</td>
<td>Hydraulic Fluid</td>
<td>0.87</td>
<td>1812</td>
<td>A</td>
<td>Double-walled tank</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80.105</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.37</td>
</tr>
</tbody>
</table>

Hydraulic Fluid Total

<table>
<thead>
<tr>
<th>Bldg#</th>
<th>Room#</th>
<th>Bldg Name</th>
<th>Fluid Capacity (gal)</th>
<th>System Type</th>
<th>Sp Gr</th>
<th>**Max Lbs</th>
<th>Stops</th>
<th>Secondary Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,812</td>
</tr>
</tbody>
</table>

Motor Oil

<table>
<thead>
<tr>
<th>Bldg#</th>
<th>Room#</th>
<th>Bldg Name</th>
<th>Fluid Capacity (gal)</th>
<th>System Type</th>
<th>Sp Gr</th>
<th>**Max Lbs</th>
<th>Stops</th>
<th>Secondary Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td></td>
<td>Campus Ops (Transportation)</td>
<td>250</td>
<td>Motor Oil</td>
<td>0.87</td>
<td>1812</td>
<td>A</td>
<td>Double-walled tank</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80.105</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.37</td>
</tr>
</tbody>
</table>

Motor Oil Total

<table>
<thead>
<tr>
<th>Bldg#</th>
<th>Room#</th>
<th>Bldg Name</th>
<th>Fluid Capacity (gal)</th>
<th>System Type</th>
<th>Sp Gr</th>
<th>**Max Lbs</th>
<th>Stops</th>
<th>Secondary Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,812</td>
</tr>
</tbody>
</table>

Waste Oil

<table>
<thead>
<tr>
<th>Bldg#</th>
<th>Room#</th>
<th>Bldg Name</th>
<th>Fluid Capacity (gal)</th>
<th>System Type</th>
<th>Sp Gr</th>
<th>**Max Lbs</th>
<th>Stops</th>
<th>Secondary Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td></td>
<td>Campus Ops</td>
<td>400</td>
<td>Waste Oil</td>
<td>0.87</td>
<td>2899</td>
<td>A</td>
<td>Double-walled tank</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80.097</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.37</td>
</tr>
</tbody>
</table>

Waste Oil Total

<table>
<thead>
<tr>
<th>Bldg#</th>
<th>Room#</th>
<th>Bldg Name</th>
<th>Fluid Capacity (gal)</th>
<th>System Type</th>
<th>Sp Gr</th>
<th>**Max Lbs</th>
<th>Stops</th>
<th>Secondary Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,899</td>
</tr>
</tbody>
</table>

Waste Food Oil Tanks

<table>
<thead>
<tr>
<th>Bldg#</th>
<th>Room#</th>
<th>Bldg Name</th>
<th>Fluid Capacity (gal)</th>
<th>System Type</th>
<th>Sp Gr</th>
<th>**Max Lbs</th>
<th>Stops</th>
<th>Secondary Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td></td>
<td>Center Marketplace</td>
<td>250</td>
<td>Waste Grease</td>
<td>0.89</td>
<td>1853.4</td>
<td>A</td>
<td>Active - spill kit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80.107</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>Center Marketplace</td>
<td>250</td>
<td>Waste Grease</td>
<td>0.89</td>
<td>1853.4</td>
<td>A</td>
<td>Active - spill kit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80.107</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Breezeway Food Court</td>
<td>250</td>
<td>Waste Grease</td>
<td>0.89</td>
<td>1853.4</td>
<td>A</td>
<td>Active - spill kit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80.103</td>
</tr>
</tbody>
</table>

Food Oil Total

<table>
<thead>
<tr>
<th>Bldg#</th>
<th>Room#</th>
<th>Bldg Name</th>
<th>Fluid Capacity (gal)</th>
<th>System Type</th>
<th>Sp Gr</th>
<th>**Max Lbs</th>
<th>Stops</th>
<th>Secondary Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,560</td>
</tr>
</tbody>
</table>

OIL CONTAINED IN EQUIPMENT

<table>
<thead>
<tr>
<th>Bldg#</th>
<th>Room#</th>
<th>Bldg Name</th>
<th>Fluid Capacity (gal)</th>
<th>System Type</th>
<th>Sp Gr</th>
<th>**Max Lbs</th>
<th>Stops</th>
<th>Secondary Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>103</td>
<td>Sanson Life Sciences Building</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>1</td>
<td>123</td>
<td>Sanson Life Sciences Building</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>2</td>
<td>100G</td>
<td>General Classroom South</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>2</td>
<td>100H</td>
<td>General Classroom South</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>3</td>
<td>110</td>
<td>SE Wimberly Library</td>
<td>150</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>131</td>
<td>3</td>
<td>Interior of building</td>
</tr>
<tr>
<td>3A</td>
<td>195A</td>
<td>Library Addition</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>4</td>
<td>145</td>
<td>Instructional Services</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>08W</td>
<td>199</td>
<td>Student Health Services</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Building Name</td>
<td>Floor</td>
<td>Type of Lift</td>
<td>Lift Size</td>
<td>Stage Lift</td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------</td>
<td>-------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>199</td>
<td>Dorothy F. Schmidt College of Arts and Letters - Arts and Letters</td>
<td>150</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>131</td>
<td>Interior of building</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>123</td>
<td>Dorothy F. Schmidt College of Arts and Letters - Arts and Letters</td>
<td>225</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>196</td>
<td>Interior of building</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>195A</td>
<td>Behavioral Sciences</td>
<td>225</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>196</td>
<td>5</td>
<td>Interior of building</td>
</tr>
<tr>
<td>12</td>
<td>195B</td>
<td>Behavioral Sciences</td>
<td>225</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>196</td>
<td>5</td>
<td>Interior of building</td>
</tr>
<tr>
<td>22</td>
<td>195</td>
<td>Computing Center</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>31</td>
<td>124A</td>
<td>University Center</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>31</td>
<td>101B</td>
<td>University Center</td>
<td>300</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>261</td>
<td>2 - Freight</td>
<td>Interior of building</td>
</tr>
<tr>
<td>31D</td>
<td>115</td>
<td>Continuing Education Hall</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>36</td>
<td>144</td>
<td>College of Engineering</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>38</td>
<td>101A</td>
<td>Gymnasium</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>43</td>
<td>199K</td>
<td>Science & Engineering</td>
<td>400</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>348</td>
<td>3 - Lg Freight</td>
<td>Interior of building</td>
</tr>
<tr>
<td>44</td>
<td>153</td>
<td>Social Science Building</td>
<td>150</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>131</td>
<td>3</td>
<td>Interior of building</td>
</tr>
<tr>
<td>44</td>
<td>153A</td>
<td>Social Science Building</td>
<td>150</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>131</td>
<td>3</td>
<td>Interior of building</td>
</tr>
<tr>
<td>47</td>
<td>100Y</td>
<td>College of Education</td>
<td>175</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>152</td>
<td>4</td>
<td>Interior of building</td>
</tr>
<tr>
<td>47</td>
<td>100Z</td>
<td>College of Education</td>
<td>175</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>152</td>
<td>4</td>
<td>Interior of building</td>
</tr>
<tr>
<td>51</td>
<td>100D</td>
<td>Dorothy F. Schmidt College of Arts and Letters - Performing Arts</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>51</td>
<td>100H</td>
<td>Dorothy F. Schmidt College of Arts and Letters - Performing Arts</td>
<td>75</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>65</td>
<td>2 - Chair Lift</td>
<td>Interior of building</td>
</tr>
<tr>
<td>52</td>
<td>100C</td>
<td>Dorothy F. Schmidt College of Arts and Letters - Arts and Humanities</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>55</td>
<td>120A</td>
<td>Physical Science</td>
<td>150</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>131</td>
<td>3</td>
<td>Interior of building</td>
</tr>
<tr>
<td>55</td>
<td>120B</td>
<td>Physical Science</td>
<td>175</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>152</td>
<td>4</td>
<td>Interior of building</td>
</tr>
<tr>
<td>67</td>
<td>199</td>
<td>Tom Oxley Athletic Center</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>71</td>
<td>195A</td>
<td>College of Medicine</td>
<td>175</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>152</td>
<td>4</td>
<td>Interior of building</td>
</tr>
<tr>
<td>71</td>
<td>195B</td>
<td>College of Medicine</td>
<td>175</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>152</td>
<td>4</td>
<td>Interior of building</td>
</tr>
<tr>
<td>75</td>
<td>133</td>
<td>The Eleanor R. Baldwin House (President’s Residence)</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>80</td>
<td>195A</td>
<td>Student Support Services</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>80</td>
<td>195B</td>
<td>Student Support Services</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>81</td>
<td>101A</td>
<td>Parking Garage I</td>
<td>225</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>196</td>
<td>5</td>
<td>Interior of building</td>
</tr>
<tr>
<td>81</td>
<td>101B</td>
<td>Parking Garage I</td>
<td>225</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>196</td>
<td>5</td>
<td>Interior of building</td>
</tr>
<tr>
<td>84</td>
<td>195A</td>
<td>Christine E. Lynn College of Nursing</td>
<td>150</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>131</td>
<td>3</td>
<td>Interior of building</td>
</tr>
<tr>
<td>84</td>
<td>195B</td>
<td>Christine E. Lynn College of Nursing</td>
<td>150</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>131</td>
<td>3</td>
<td>Interior of building</td>
</tr>
<tr>
<td>86</td>
<td>195A</td>
<td>College of Business</td>
<td>175</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>152</td>
<td>4</td>
<td>Interior of building</td>
</tr>
<tr>
<td>86</td>
<td>195B</td>
<td>College of Business</td>
<td>175</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>152</td>
<td>4</td>
<td>Interior of building</td>
</tr>
<tr>
<td>87</td>
<td>195</td>
<td>Desantis Center Pavilion</td>
<td>100</td>
<td>Hydraulic</td>
<td>0.87</td>
<td>87</td>
<td>2</td>
<td>Interior of building</td>
</tr>
<tr>
<td>Bldg #</td>
<td>Trans#</td>
<td>Bldg Name</td>
<td>*Fluid Capacity (gal)</td>
<td>Fluid Type</td>
<td>Sp Gr</td>
<td>**Max Lbs</td>
<td>Rating (kVA)</td>
<td>Additional Information</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>------------------------------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>V1</td>
<td>Sanson Life Sciences Building</td>
<td>427</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>388.57</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>2 & 4</td>
<td>V2</td>
<td>General Classroom South</td>
<td>435</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>395.85</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>V3</td>
<td>SE Wimberly Library</td>
<td>520</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>473.2</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>V3A</td>
<td>Library Addition</td>
<td>208</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>189.28</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>V06</td>
<td>Algonquin Res Hall</td>
<td>339</td>
<td>Enviro Temp</td>
<td>0.92</td>
<td>311.88</td>
<td>1500</td>
<td>Non-petroleum (ester)</td>
</tr>
<tr>
<td>8</td>
<td>V8</td>
<td>Student Svcs/Cafeteria</td>
<td>273</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>248.43</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>8W</td>
<td>V8W</td>
<td>Student Health Services</td>
<td>280</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>254.8</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>V11</td>
<td>Field House/Pool</td>
<td>395</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>359.45</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>11A</td>
<td>V11A</td>
<td>Field House West</td>
<td>425</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>386.75</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>V12</td>
<td>Behavioral Sciences</td>
<td>697</td>
<td>Mineral Oil</td>
<td>0.91</td>
<td>634.27</td>
<td>2500</td>
<td>Temporary Unit</td>
</tr>
<tr>
<td>22</td>
<td>V22</td>
<td>Computing Center</td>
<td>418</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>380.28</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>23-25,</td>
<td>T-COB</td>
<td>College of Business Multiple</td>
<td>508</td>
<td>Mineral Oil</td>
<td>0.91</td>
<td>462.28</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>V31</td>
<td>University Center</td>
<td>391</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>355.81</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>31E</td>
<td>V31E</td>
<td>Student Activities Center</td>
<td>290</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>263.9</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>35A</td>
<td>V35A</td>
<td>Research Spt Fac</td>
<td>283</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>257.53</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>V36</td>
<td>College of Engineering</td>
<td>310</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>282.1</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>V12</td>
<td>Athletics Track</td>
<td>297</td>
<td>Mineral Oil</td>
<td>0.91</td>
<td>270.27</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>V38</td>
<td>Gymnasium</td>
<td>252</td>
<td>Mineral Oil</td>
<td>0.91</td>
<td>229.32</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>V46</td>
<td>Student Housing Svcs</td>
<td>285</td>
<td>Oil Type I</td>
<td>0.91</td>
<td>259.35</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>V67</td>
<td>Tom Oxley Athletic Center</td>
<td>354</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>322.14</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>V70</td>
<td>Indian River Tower E&W</td>
<td>611</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>556.01</td>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>V71</td>
<td>Coll of Medicine</td>
<td>590</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>536.9</td>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>V72</td>
<td>Bldg 71 Chiller Plant</td>
<td>520</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>473.2</td>
<td>1500</td>
<td>West</td>
</tr>
<tr>
<td>72</td>
<td>V72</td>
<td>Bldg 71 Chiller Plant</td>
<td>560</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>509.6</td>
<td>2500</td>
<td>East</td>
</tr>
<tr>
<td>80</td>
<td>V80</td>
<td>Student Support Services</td>
<td>382</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>347.62</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>V81</td>
<td>Parking Garage I</td>
<td>241</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>219.31</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>V84</td>
<td>Christine E. Lynn College of Nursing</td>
<td>698</td>
<td>Enviro Temp</td>
<td>0.92</td>
<td>642.16</td>
<td>1500</td>
<td>Non-petroleum (ester)</td>
</tr>
<tr>
<td>88</td>
<td>V88</td>
<td>Parking Garage II</td>
<td>290</td>
<td>Non-PCB Oil</td>
<td>0.91</td>
<td>263.9</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>V89</td>
<td>Heritage Tiers</td>
<td>537</td>
<td>Oil Type II</td>
<td>0.91</td>
<td>488.67</td>
<td>2500</td>
<td></td>
</tr>
</tbody>
</table>

Mineral Oil in Transformers*

Elevator Hydraulic Fluid Total: 7,475

Hydraulic Fluid Total: 6,504
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>V91</td>
<td>Rec & Fitness Center</td>
<td>342</td>
<td>Oil Type I</td>
</tr>
<tr>
<td>92</td>
<td>V92</td>
<td>Glades Pk Towers</td>
<td>604</td>
<td>Mineral Oil</td>
</tr>
<tr>
<td>96</td>
<td>V96</td>
<td>COECS</td>
<td>509</td>
<td>Enviro Temp</td>
</tr>
<tr>
<td>97</td>
<td>V97</td>
<td>Culture & Society</td>
<td>405</td>
<td>Mineral Oil</td>
</tr>
<tr>
<td>98</td>
<td>V98</td>
<td>Innovation Village North</td>
<td>627</td>
<td>Enviro Temp</td>
</tr>
<tr>
<td>98A</td>
<td>V98A</td>
<td>NVA Chiller Plant</td>
<td>243</td>
<td>Enviro Temp</td>
</tr>
<tr>
<td>99</td>
<td>V99</td>
<td>Innovation Village South</td>
<td>534</td>
<td>Enviro Temp</td>
</tr>
<tr>
<td>100</td>
<td>V100</td>
<td>Football Stadium</td>
<td>360</td>
<td>Biotemp</td>
</tr>
<tr>
<td>100</td>
<td>V100</td>
<td>Football Stadium</td>
<td>609</td>
<td>Biotemp</td>
</tr>
<tr>
<td>102</td>
<td>V102</td>
<td>Parliament Hall</td>
<td>541</td>
<td>Enviro Temp</td>
</tr>
</tbody>
</table>

Transformer Oil Total 13,638 12,410

* Elevator hydraulic fluid capacity is estimated based on guidance provided by Otis, as follows:
 2 Stop 100 gallons of hydraulic fluid
 3 Stop 150
 4 Stop 175
 5 Stop 225
 Freight 400

** Approximate based on estimated capacity

***Listed transformers are owned by Florida Atlantic University. Any other FAU transformers on campus, but not on the list, are of the dry type, containing no oil.
FAU Boca Raton Campus Site Plan
Appendix I - Florida DEP Discharge Reporting & Incident Notification Forms

Discharge Reporting Form

Please Print Or Type

Instructions are on the reverse side. Please complete all applicable blanks.

1. Facility ID Number (if registered): __________________________ 2. Date of form completion: __________________________

3. General information
 Facility name:
 Facility Owner or Operator: __________________________
 Facility Contact Person: __________________________
 Telephone number: ________ County: ________
 Facility Mailing address: __________________________
 Location of discharge (facility street address): __________________________
 Latitude and Longitude of discharge (if known): __________________________

4. Date of receipt of test results or discovery of confirmed discharge: ___________ month/day/year

5. Estimated number of gallons discharged: __________________________

6. Discharge affected: [] Air [] Soil [] Ground water [] Drinking water well(s) [] Shoreline [] Surface water (water body name)

7. Method of discovery (check all that apply)
 [] Liquid detector (automatic or manual)
 [] Internal inspection
 [] Vapor detector (automatic or manual)
 [] Inventory control
 [] Tightness test
 [] Monitoring wells
 [] Pressure test
 [] Automatic tank gauging
 [] Statistical Inventory Reconciliation
 [] Manual tank gauging
 [] Other

8. Type of regulated substance discharged: (check one)
 [] Unknown
 [] Used/waste oil
 [] Jet fuel
 [] Heating oil
 [] New/lube oil
 [] Gasoline
 [] Aviation gas
 [] Diesel
 [] Kerosene
 [] Mineral acid
 [] Hazardous substance - includes CERCLA substances fromUSTsabove reportable quantities, pesticides, ammonia, chlorine, and derivatives (write in name or Chemical Abstract Service (CAS) number)
 [] Other

9. Discharge originated from: (check all that apply)
 [] Dispensing system
 [] Pipe
 [] Barge
 [] Pipeline
 [] Vehicle
 [] Tank
 [] Fitting
 [] Tanker ship
 [] Railroad tankcar
 [] Airplane
 [] Unknown
 [] Valve failure
 [] Other Vessel
 [] Tank truck
 [] Drum
 [] Other

10. Cause of the discharge: (check all that apply)
 [] Loose connection
 [] Puncture
 [] Spill
 [] Collision
 [] Fire/explosion
 [] Overfill
 [] Human error
 [] Vehicle Accident
 [] Installation failure
 [] Other

11. Actions taken in response to the discharge:

12. Comments:

13. Agencies notified (as applicable):
 [] State Warning Point 1-800-326-0519
 [] National Response Center 1-800-424-8802
 [] Fire Department
 [] County Tanks Program
 [] DEP (district/person)

14. To the best of my knowledge and belief all information submitted on this form is true, accurate, and complete.

Printed Name of Owner, Operator or Authorized Representative __________________________
Signature of Owner, Operator or Authorized Representative __________________________

41
Oil spills to navigable waters of the United States and releases of a reportable quantities of CERCLA hazardous substances must be reported immediately to the National Response Center. Reports to the National Response Center of oil spills to navigable waters need not be repeated to any other federal, state, or local agency. Conditions at the site that do not involve spills to navigable waters of the United States, or CERCLA hazardous substances, that pose an immediate threat to human health or the environment must be reported to the State Warning Point or the Local Fire Department. Never-the-less, this form must be submitted for all discharges from facilities with storage tank systems, and sites in accordance with Chapters 62-761 and 770, F.A.C.

<table>
<thead>
<tr>
<th>State Warning Point</th>
<th>National Response Center</th>
<th>Local Fire Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-800-320-0519</td>
<td>1-800-424-8802</td>
<td>(obtain local number)</td>
</tr>
</tbody>
</table>

This form must be used to report any confirmed discharge, or of any one of the following, unless the discharge is from a previously-known and reported discharge:

1. Results of analytical or field tests of surface water, groundwater, or soils indicating the presence of contamination by:
 a. A hazardous substance from a UST;
 b. A regulated substance, other than petroleum products;
 c. Petroleum products' chemicals of concern specified in Chapter 62-770, F.A.C.;
2. A spill or overfill event of a regulated substance to soil equal to or exceeding 25 gallons, unless the regulated substance has a more stringent reporting requirement specified in CFR Title 40, Part 302;
3. Free product or sheen of a regulated substance present in surface or groundwater, soils, basements, sewers, and utility lines at the facility or in the surrounding area
4. Soils stained by regulated substances observed during a closure assessment performed in accordance with Rule 62-761.800, F.A.C.

A copy of this form must be delivered or faxed to the County within 24 hours of the discovery of a discharge, or before the close of the next business day. It is recommended that the original copy be sent in the mail. If the discharge occurs at a county-owned facility, a copy of the form must be faxed or delivered to the local DEP District office.

DEP District Office Addresses:

Northwest District
160 Governmental Center, Suite 308
Pensacola, FL 32501-5794
Phone: 850-595-8360
FAX: 850-595-8417

Northeast District
7825 Baymeadows Way, Suite B 200
Jacksonville, FL 32256-7590
Phone: 904-807-3300
FAX: 904-448-4366

Central District
3319 Maguire Blvd., Suite 232
Orlando, FL 32803-3767
Phone: 407-894-7555
FAX: 407-897-6499

Southwest District
13051 North Telecom Parkway
Tampa, FL 33637-9926
Phone: 813-632-7600
FAX: 813-632-7665

South District
2295 Victoria Ave. Suite 364
Ft. Myers FL 33901-2539
Phone: 239-332-6975
FAX: 239-332-6969

Southeast District
400 N. Congress Ave.
West Palm Beach, FL 33416-5425
Phone: 561-681-6600
FAX: 561-681-6790
Incident Notification Form

Please print or type

Instructions are on the reverse side. Please complete all applicable blanks.

1. Facility ID Number (if registered): ________________________________

2. Date of form completion: ________________________________

3. General information

Facility name: ___

Facility owner or operator: __

Contact person: __

Facility mailing address: __

Location of incident (facility street address): ____________________________

Latitude and longitude of incident (if known): __________________________

4. Date of discovery of incident: __________ month/day/year

5. Monitoring method that indicates a possible release or an incident (check all that apply):

[] Liquid detector (automatic or manual)
[] Gas chromatography
[] Liquid chromatography
[] Mass spectrometry
[] Other

6. Type of regulated substance stored in the storage system: (check one)

[] Methane
[] Natural gas
[] Propane
[] Other

7. Incident involves or originated from: (check all that apply)

[] Tank
[] Pipeline
[] Unusual operating conditions
[] Dispensing equipment
[] Overfill protection device

8. Cause of the incident, if known: (check all that apply)

[] Overfill (>25 gallons)
[] Spill (<25 gallons)
[] Theft
[] Overfill (>25 gallons)
[] Other

9. Actions taken in response to the incident:

__

10. Comments:

__

__

11. Agencies notified (as applicable):

[] Fire Department
[] Local Government
[] DEP (district/region)

12. To the best of my knowledge and belief, all information submitted on this form is true, accurate, and complete.

Printed name of owner, operator, or authorized representative: ________________________________

Signature of owner, operator, or authorized representative: ________________________________
Instructions for completing the Incident Notification Form

This form must be completed to notify the County of all incidents, or of the following suspected releases:
1. A failed or inconclusive tightness, pressure, or breach of integrity test.
2. Internal inspection results, including perforations, corrosion holes, weld failures, or other similar defects that indicate that a release has occurred.
3. Unusual operating conditions such as the erratic behavior of product dispensing equipment, the sudden loss of product from the storage tank system, or any unexplained presence of water in the tank, unless system equipment is found to be defective but not leaking;
4. Odors of a regulated substance in surface or groundwater, soils, basements, septic and utility lines at the facility or in the surrounding area;
5. The loss of a regulated substance from a storage tank system exceeding 100 gallons on impervious surfaces other than secondary containment, driveways, airport runways, or other similar asphalt or concrete surfaces;
6. The loss of a regulated substance exceeding 500 gallons inside a dike field area with secondary containment; and
7. A positive response of release detection devices or methods described in Rule 62-761.10, F.A.C., or approved under Rule 62-761.850, F.A.C. A positive response shall be the indication of a release of regulated substances, an exceedance of the Release Detection Response Level or a breach of integrity of a storage tank system.

If the investigation of an incident indicates that a discharge did not occur (for example, the investigation shows that the situation was the result of a theft or a malfunctioning electronic release detection probe), then a letter of retraction should be sent to the County within fourteen days with documentation that verifies that a discharge did not occur. If within 24 hours of an incident, or before the close of the County’s next business day, the investigation of the incident does not confirm that a discharge has occurred, an Incident Report Form need not be submitted.

A copy of this form must be delivered or faxed to the County within 24 hours of the discovery of an incident, or before the close of the next business day. It is recommended that the original copy be sent in the mail. If the incident occurs at a county-owned facility, a copy of the form must be faxed or delivered to the local DEP District office.

DEP District Office Addresses:

Northwest District
160 Governmental Center
Peninsula FL. 32501-5794
Phone: 850-595-8360
FAX: 850-595-8417

Northeast District
7825 Baymeadows Way Suite B 200
Jacksonville FL. 32256-7590
Phone: 904-488-4300
FAX: 904-488-4366

Central District
3319 Maguire Blvd. Suite 232
Orlando, FL. 32803-3767
Phone: 407-897-7555
FAX: 407-897-7966

Southwest District
3804 Coconut Palm Dr.
Tampa FL. 33619-2818
Phone: 813-744-6100
FAX: 813-744-6125

South District
2205 Victoria Ave. Suite 301
Ft. Myers FL. 33901-2549
Phone: 813-332-6975
FAX: 813-332-6969

Southeast District
400 N. Congress Ave.
West Palm Beach, FL. 33416-5425
Phone: 561-681-6600
FAX: 561-681-6790

(02/01/98)
Appendix J – SPCC Data Sheets for Aboveground Storage Tanks

BLDG# 71 TANK# 18 CAMPUS: BOCA RATON

Date: 10/5/2011

Photo Looking South

3,000-gallon, double-walled diesel belly tank with interstitial drain.

Local Topography: Flat to slight (0 to <5%) slope to the North.

Notable Ground Surface Features:

- Tank on concrete pad.
- Adjacent area is concrete, walled on 3 sides w/ weep holes.
- Weep holes drain to grassy area.
- Direct access to nearby storm drain blocked by east wall.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

Storm drain

W (270°) Tank → E (90°) Storm drain @ 90°, 41 feet from tank

S (180°)
Local Topography: Moderate (5% to <10%) slope to the southeast, toward breezeway.

Notable Ground Surface Features:

- Tank on settled concrete pad with slight SSE slope.
- Walled area with weep holes to grassy area beyond.
- Liquid likely to pool in SE corner of area based on slope/staining from precipitation.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°) No storm drain in close proximity.

S (180°)
5,000-gallon gasoline/3,000-gallon diesel, double-walled AST with (2) "Greenleaf" electronic level & interstitial monitoring gages, Model EFG-8000

Local Topography: Slight (<5%) slope to the northwest (Approximately 12’ to low area in blacktop)

Notable Ground Surface Features:

- Tank on concrete pad
- Area around tank is blacktop
- Grassy area approximately 20’ to the south

Location of nearest storm drain/sewer, floor drain, ditch, or surface water way:

<table>
<thead>
<tr>
<th>Storm drain</th>
<th>N (0°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W (270°)</td>
<td>Tank</td>
</tr>
<tr>
<td>Storm drain @ 315°, 191 feet from tank</td>
<td></td>
</tr>
</tbody>
</table>

S (180°)
Local Topography: Significant (>10%) slope to the southeast.

Notable Ground Surface Features:
- Tank on concrete pad.
- Adjacent area is concrete slab & walls with entry gates.
- Grassy area surrounds tank area.
- Floor has very slight slope SE, toward gate.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°) No storm drain in close proximity.

S (180°)
Photo Looking North

650-gallon, double-walled diesel belly tank with interstitial drain.

Local Topography: Flat.

Notable Ground Surface Features:
- Tank on concrete pad.
- Located in vaulted room with weep holes.
- Floor is settled with slight NW slope, away from weep holes.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°) Storm drain @ 260°, 57 feet from vault.
Minimal chance of release reaching drain.

S (180°)
Local Topography: Slight (<5%) slope to the west.

Notable Ground Surface Features:
- Tank on concrete pad.
- Adjacent area is concrete slab & walls with weep holes.
- Grassy area to the west side of tank area.
- Floor has slight slope W, toward weep holes.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°) Storm drain @ 170°, 54 feet from tank.

Note: DRAIN IS LOCATED IN GRASSY AREA.
850-gallon, double-walled diesel belly tank with interstitial drain.

Local Topography: Flat.

Notable Ground Surface Features:
- Tank on concrete pad.
- Located in vaulted room with weep holes to south side.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°) No storm drain in close proximity.

S (180°)
1,000-gallon, double-walled, vaulted diesel tank with electronic interstitial monitor.

Local Topography: Flat.

Notable Ground Surface Features:
- Tank on concrete pad.
- Adjacent area is gravel in chain link fenced area.
- Grassy area to the south side of tank area.
- “Pneumercator” liquid level sensor, Model LC1001.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°)

Storm drain

Storm drain @ 75°, 45 feet; no direct route to drain → berm on east side of drain area.

S (180°)
Local Topography: Slight (<5%) slope to the northwest, toward sidewalk.

Notable Ground Surface Features:
- Tank on concrete pad.
- Grassy area surrounds tank area.
- Tank adjacent to transformer.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°) No storm drain in close proximity.

S (180°)
2,200-gallon, double-walled diesel belly tank with electronic interstitial monitoring and drain plug.

Local Topography: Slight (<5%) slope to the ENE.

Notable Ground Surface Features:
- Tank on concrete pad.
- Adjacent area is gravel.
- Loading dock lift table is 15’ east of tank, has perimeter raised rim and floor drain → not in tank flow direction.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°) No storm drain in close proximity.

S (180°)
Photo Looking South

650-gallon, double-walled diesel belly tank with electronic interstitial monitoring and no drain plug.

Local Topography: Moderate (5% to <10%) slope to the west-northwest toward landscaped area and parking lot.

Notable Ground Surface Features:

- Tank on concrete pad.
- Area around tank is landscaped.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

Storm drain

N (0°)

W (270°) Tank E (90°) Storm drain @ 285°, 67 feet from tank

S (180°)
650-gallon, double-walled diesel belly tank with electronic interstitial monitoring and no drain plug.

Local Topography: Moderate (5% to <10%) slope to the ENE and WSW toward sidewalk and parking lot.

Notable Ground Surface Features:
- Tank on concrete pad.
- Around tank is blacktop to S & W; concrete to N; landscaped to E.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°) Storm drain
W (270°) Tank E (90°) Storm drain @ 75°, 75 feet from tank
Storm drain @ 235°, 131 feet from tank
S (180°)
555-gallon, double-walled diesel belly tank with electronic interstitial monitoring and no drain plug.

Local Topography: Significant (>10%) slope to the north, toward the parking garage wall.

Notable Ground Surface Features:
- Tank on concrete pad.
- Area around tank is grass.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)
W (270°) Tank E (90°) No storm drain in close proximity to tank.

S (180°)
SPCC DATA SHEET

BLDG# 2 TANK# NON-REGULATED CAMPUS: BOCA RATON

Photo Looking East

DATE: 10/7/2011

400-gallon, double-walled diesel belly tank.

Local Topography: Slight (<5%) slope to the west.

Notable Ground Surface Features:

- Tank on concrete pad in walled area with gate.
- Grassy area approximately 8 feet west of tank.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°) No storm drain in close proximity to tank.

S (180°)
SPCC DATA SHEET

BLDG# 3 TANK# NON-REGULATED

Photo Looking Northeast

DATE: 10/7/2011

CAMPUS: BOCA RATON

250-gallon, double-walled diesel belly tank.

Local Topography: Significant (>10%) slope to the southwest.

Notable Ground Surface Features:

- Tank on concrete slab.
- Adjacent outside area is grassy.
- Close proximity to sidewalk and parking area.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°) Storm drain @ 225°, 46 feet from tank.

S (180°) Storm drain
400-gallon, double-walled diesel belly tank.

Local Topography: Slight (<5%) slope to the south.

Notable Ground Surface Features:
- Tank on concrete slab, inside room, south side of building.
- Surrounding outside area is grassy.
- Transformer and backflow preventers in close proximity.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°) No storm drain in close proximity to tank.

S (180°)
SPCC DATA SHEET

BLDG# 13 TANK# NON-REGULATED

CAMPUSS: BOCA RATON

Photo Looking SSW

DATE: 10/21/2011

Local Topography: Flat.

Notable Ground Surface Features:

- Tank on concrete pad.
- Surrounded by grassy area.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°) Storm drain @ 100°, 148 feet from tank.

S (180°)

175-gallon, double-walled diesel belly tank.
Local Topography: Slight (<5%) slope to the south.

Notable Ground Surface Features:

- Tank on concrete slab surrounded by gravel.
- Located in alcove area of bldg, central south side.
- Surrounding outside area is paved concrete walkway.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

<table>
<thead>
<tr>
<th>Direction</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (0°)</td>
<td></td>
</tr>
<tr>
<td>W (270°)</td>
<td>Tank</td>
</tr>
<tr>
<td>E (90°)</td>
<td>No storm drain in close proximity to tank.</td>
</tr>
<tr>
<td>S (180°)</td>
<td></td>
</tr>
</tbody>
</table>
475-gallon, double-walled diesel belly tank.

Local Topography: Moderate (5% to >10%) slope to the southeast.

Notable Ground Surface Features:
- Tank on concrete slab.
- Adjacent area is grassy.
- Close proximity to sidewalk, transformer, and wall.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)
W (270°) Tank E (90°) Storm drain @ 180°, 28 feet from tank.

Storm drain S (180°)
SPCC DATA SHEET

BLDG# 38 TANK# NON-REGULATED CAMPUS: BOCA RATON

Photo Looking (South) Into Vaulted Room DATE: 10/21/2011

250-gallon, double-walled diesel belly tank.

Local Topography: Flat.

Notable Ground Surface Features:

- Tank on concrete pad.
- Located in generator room with walls and access door
- Blacktop and concrete area with dirt/grass is exterior to room.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°) No storm drain in close proximity to tank.

S (180°)
250-gallon, double-walled diesel belly tank.

Local Topography: Flat.

Notable Ground Surface Features:
- Tank on concrete pad.
- Adjacent area is concrete, walled on all sides.
- Storm drain outside vaulted room not readily reached in event of spill.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

- N (0°) Storm drain
- W (270°) Tank
- E (90°) Storm drain @ 300°, 63 feet from tank
- S (180°)
Local Topography: Flat.

Notable Ground Surface Features:
- Tank on concrete pad.
- Adjacent area is concrete, walled on all sides.
- Room is bermed (approximately 2” high).

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

Storm drain

W (270°) Tank E (90°) Storm drain @ 315°, 69 feet from tank

S (180°)
SPCC DATA SHEET

BLDG# 47 TANK# NON-REGULATED
CAMPUS: BOCA RATON

Photo Looking Into Vaulted Generator Room

DATE: 10/21/2011

540-gallon, double-walled diesel belly tank.

Local Topography: Flat.

Notable Ground Surface Features:

- Tank on concrete pad.
- Located in building 90.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°) Storm drain @ 200°, 18 feet from tank.

Storm drain S (180°)
SPCC DATA SHEET

BLDG# 51 TANK# NON-REGULATED CAMPUSS: BOCA RATON

Photo Looking (South) Into Vaulted Room

DATE: 10/21/2011

400-gallon, double-walled diesel belly tank.

Local Topography: Flat.

Notable Ground Surface Features:

- Tank on concrete pad.
- Adjacent area is concrete, walled on all sides.
- Grassy area north of access door.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°) Storm drain @ 200°, 58 feet from tank

Storm drain S (180°)
400-gallon, double-walled diesel belly tank.

Local Topography: Flat.

Notable Ground Surface Features:
- Tank on concrete pad in room with no weep holes.
- Exterior area is loading dock that slopes back toward building.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

- Storm drain @ 0°, 20 feet from access door.
- No direct pathway to ditch in event of a release.
130-gallon, double-walled diesel belly tank.

Local Topography: Flat.

Notable Ground Surface Features:
- Tank on concrete pad.
- Surrounding area is rocks and dirt.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

<table>
<thead>
<tr>
<th>Direction</th>
<th>Feature</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (0°)</td>
<td>Tank</td>
<td>E (90°)</td>
</tr>
<tr>
<td>W (270°)</td>
<td>Tank</td>
<td>No storm drain in close proximity to tank.</td>
</tr>
<tr>
<td>S (180°)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPCC DATA SHEET

BLDG# 80 TANK# NON-REGULATED CAMPUS: BOCA RATON

Photo Looking Into Walled-Off Generator Area

DATE: 10/21/2011

366-gallon, double-walled diesel belly tank.

Local Topography: Flat to slight (<<5%).

Notable Ground Surface Features:

- Tank on concrete pad.
- Located in open room adjacent to grassy area.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°) Storm drain @ 205°, 60 feet from tank.

S (180°)

Storm drain
250-gallon, double-walled diesel belly tank.

Local Topography: Flat.

Notable Ground Surface Features:
- Tank on concrete pad.
- Surrounded by grassy area.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)
W (270°) Tank E (90°) No storm drain in close proximity to tank.
S (180°)
SPCC DATA SHEET

BLDG# 88 TANK# NON-REGULATED CAMPUS: BOCA RATON

Photo Looking NNE

DATE: 10/21/2011

250-gallon, double-walled diesel belly tank.

Local Topography: Flat.

Notable Ground Surface Features:
- Tank on concrete pad.
- Adjacent area is grassy.
- Tank adjacent to parking area.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

Ditch
W (270°) Tank E (90°) Ditch @ 270°, 40 feet from tank

S (180°)
500-gallon, double-walled diesel belly tank.

Local Topography: Flat.

Notable Ground Surface Features:
- Tank on concrete pad.
- Surrounded by gravel.
- Loading dock lift table is 17’ east of tank, has perimeter raised rim and floor drain → not in tank flow direction.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)

W (270°) Tank E (90°) No storm drain in close proximity.

S (180°)
366-gallon, double-walled diesel belly tank.

Local Topography: Flat.

Notable Ground Surface Features:
- Tank on concrete pad.
- Adjacent area is concrete walkway with landscaping.
- Grassy area north of access door.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°)
Ditch
W (270°) Tank E (90°) Ditch @ 275°, 31 feet from tank
S (180°)
450-gallon, double-walled diesel belly tank.

Local Topography: Flat.

Notable Ground Surface Features:

- Tank on concrete pad.
- Surrounded by gravel.

Location of nearest storm water drain/sewer, floor drain, ditch, or surface water way

N (0°) Retention pond & drain
W (270°) Tank E (90°) Retention pond & drain @ 0°, 88’ from tank.

S (180°)
Appendix K - AST Visual Inspection Checklist

Above Ground Storage Tank
Monthly Visual Inspection Checklist*

<table>
<thead>
<tr>
<th>Facility ID#</th>
<th>8623245</th>
<th>Tank #</th>
<th>Tank Location Bldg. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checklist Items</td>
<td>Yes/No</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>Tank Condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the tank corroded, cracked, or structurally damaged?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are there any signs of petroleum product (stains, free product) on or around the tank?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do hoses or dispensers show any evidence of damage or excessive wear?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the tank gauge damaged or malfunctioning?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the “Release Detection Response Level Description” document missing or illegible?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Containment Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If the tank is equipped with a release detection alarm, is it sounding or indicated?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If the tank is equipped with a release detection alarm, does the test light and/or horn fail to work?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If the tank is equipped with a valve on the drain port, does anything come out when the valve is opened?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If the tank is equipped with a leak detection sight tube or inspection port, is petroleum product visible?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is petroleum product or water present in the overfill protection chamber (spill bucket)?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If the tank is not equipped with a valve for inspection purposes, is the tank drain plug missing or loose?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the “diesel” label on the overfill protection chamber (spill bucket) missing or faded?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional Comments</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS

Complete this checklist on the 15th of each month and send the completed form to EH&S, CO69, Room 112; fax it to 7-2210; or email it to ehs@fau.edu. If the 15th falls on a weekend, complete the form the preceding Friday.

All answers should be “No” or “N/A”. Explain any “Yes” answers in the “Comments” section, and notify EH&S immediately at 7-3129. Any “Yes” answer requires corrective action.

If there is a visible leak of diesel fuel, immediately notify EH&S at 7-3129 and begin investigating where the leak originated (i.e. filling operations, tank leakage, etc.). An incident or discharge report form may have to be completed by EH&S.

Inspection Completed by: ____________________________ (Printed Name) ____________________________ (Signature)

Date Completed: ____________________________

*Keep this completed form on file for at least 3 years.
Attachment “A”