

Domain Adaptation for Human Activity Recognition of Parkinson's disease Patients

By: Maria Cardei Mentor: Behnaz Ghoraani, Ph.D. FAU I-SENSE REU Scholar 2022

FLORIDA ATLANTIC UNIVERSITY

Background

- Human activity recognition (HAR) uses machine learning to classify data acquired by wearable sensors into activities
- Parkinson's Disease (PD) diagnosis and prognosis can be improved with HAR
 Parkinson's Disease

b)

HAR Challenges

- Various sensor types, placements on body, activity variability between people
- Minimal PD patient sensor data publicly available

FAU

& COMPUTER SCIENCE Florida Atlantic University

a) Example of sensor placements. Various placements make it difficult to generalize a machine learning model. COLLEGE OF ENGINEERING

b) Machine learning pipeline. A large amount of training data is needed for a successful model.

Project Aim

Accurately classify the motion data of PD patients into activities of daily living using domain adaptation

Domain Adaptation (DA)

A way to address the domain shift between datasets

Methodology - DANN

- Discriminative Adversarial Neural Network (DANN)
 - Aims to obtain features that are domain invariant
 - Goal is to minimize classification loss (Ly) and maximize discriminator loss (Ld)

a) DANN architecture

Methodology - Data

b) Mapping to common activities

c) Axes before reorientation

COLLEGE OF ENGINEERING & COMPUTER SCIENCE Florida Allanic University

Results – PAMAP2 to reoriented MHEALTH

Results – PAMAP2 to reoriented MHEALTH Without DA

Florida Atlantic University

9	(averaged over 7 activities)	Without DA	With DA	
	Accuracy	48.9%	70.7%	
	Recall	48.9%	70.7%	
	Precision	63.8%	64.1%	
	F1	45.0%	65.1%	
	AUC	84.0%	95.9%	
	Accuracy = (correct predictions / total predictions) * 100 Recall = TP / (TP + FN) Precision = TP / (TP + FP) F1 = harmonic mean of recall and precision AUC = area under ROC curve			

0.8

0.6

Ä

9

All metrics improve when DA is applied

Conclusions and Future Work

- DANN is a valuable DA method
- Data augmentation exploration
- Next step is to apply DANN to PD data
 - Challenge of greater domain shift

Any questions?

