Template by J. Catalina¹

FAU I-SENSE REU, Summer 2021

Marine Hydrokinetic Turbine Optimization through Control Co-Design

Presenter: Austin Snyder

Advisors: Dr. Yufei Tang, Arezoo Hasankhani

FAU I-SENSE REU, Summer 2 Template by J. Catalina¹ 2021 Marine Hydrokinetic Turbines

Advantages

- Renewable
- "Clean"
- Consistent

Challenges

- Cost of Components
- Complex Environment

"KAIRYU" Ocean Current Turbine System²

FAU I-SENSE REU, Summer 2021

Template by J. Catalina¹

Control Co-Design

FAU I-SENSE REU, Summer **Optimization Problem Setup**

2021

Template by J. Catalina¹

Design Schematic for Buoyancy-Controlled OCT⁴

FAU I-SENSE REU, Summer 2021

Preliminary Results

Template by J. Catalina¹

Initial Design

• $P_{rated} = 700 \text{ kW}$ • $P_{pump} = 18.8 \text{ kW}$ • $d_{rotor} = 20.0 \text{ m}$ • $V_{buoy} = 31.25 \text{ m}^3$

Scope

- Time Horizon: 1 week
- Prediction Horizon: 3 hours

Output

FAU I-SENSE REU, Summer 6 2021 Conclusions &

Template by J. Catalina¹

Conclusions & Next Steps

Future Plans

- ACC Paper Submission
- Generalized Application

Ongoing Work

- Reduce Time Complexity
- Linear Model Approximations
- Standardize Cost & Weight

ACC 2022 Logo⁵

Template by J. Catalina¹

References

- [1] Catalina, J. (n.d.). Blue Ocean. Slides Carnival; Piensa en Pixels. https://www.slidescarnival.com/thaisafree-presentation-template/10437
- [2] Dodo, Y., et al. (2019). Development and Design of a Floating Type Ocean Current Turbine System. Practical Design of Ships and Other Floating Structures, 732–755. https://doi.org/https://doi.org/10.1007/978-981-15-4680-8_49
- [3] Herber, D. R. Control Co-design Direct Transcription Solution Strategies: Overview and Challenges [PowerPoint slides]. Department of Systems Engineering, Colorado State University. https://www.engr.colostate.edu/~drherber/files/IDADS-Herber.pdf
- [4] Hasankani, A., et al. (Unpublished). Modeling and Numerical Simulation of a Buoyancy Controlled Ocean Current Turbine
- [5] American Control Conference (2022). [American Control Conference 2022 Logo]. Retrieved from https://acc2022.a2c2.org/