EEE 4361 - Electronics 2

Credits: 3 credits

Text book, title, author, and year: Sedra and Smith, "Microelectronic Circuits", Sixth Edition, Oxford University Press, 2010

a. **Supplemental materials:** none.

Specific course information

- a. **Catalog description:** Continuation of EEE 3300. Differential amplifiers, frequency response, feedback amplifiers, oscillators, power amplifiers, integrated electronics.
- b. Prerequisites: EEL 3300
- c. Required, elective, or selected elective: required

Specific goals for the course

 a. Specific outcomes of instruction: By the end of the course students will be able to: (i) understand both the theory and applications of Differential Amplifiers; (ii) Power Amplifiers; (iii) High-Frequency Response of Transistor Amplifiers; (iv) Feedback in Electronic Amplifiers; (v) Analysis, Design and applications involving the 555 Timer; (vi) Electronic applications covered in Laboratory 2

Brief list of topics to be covered:

- 1. The student will be able to analyze and design current mirror DC current sources.
- 2. The student will understand the use of current sources for transistor biasing and loading.
- 3. The student will be able to design multi-stage transistor amplifier (an op-amp implementation) to meet CMRR and input resistance specifications.
- 4. The student will understand the properties and design of the three basic BJT amplifier configurations CE, CB and CC.
- 5. The student will understand the high-frequency performance of all transistor amplifier configurations, including the Cascode Amplifier and the Miller Effect.
- The student will understand the Feedback concept, and ability to analyze the effect of feedback on an amplifier's voltage and current gains, input and output resistance and bandwidth.
- 7. The student will learn the concept of the four amplifier types voltage, current, transconductance and transresistance.
- 8. The student will able to design a feedback amplifier to meet gain, input and output resistance and bandwidth specifications.
- 9. The student will able to compensate a feedback amplifier.
- 10. The student will understand Class A and B power amplifiers biasing, efficiency and crossover distortion elimination.
- 11. The student will able to design a wide band audio amplifier.
- 12. The student will able to design oscillators and one-shot multi-vibrators using the 555 timer.
- 13. The student will able to use ADS to analyze amplifier's performance including new

- skills such as multi-runs for parametric sweep, Monte-Carlo Simulation and Worst Case Analysis, use of ABM components and editing of EVAL and Breakout Components.
- 14. The student will understand Design Tradeoffs: Gain vs. Input Resistance vs. Bandwidth vs. Swing.
- 15. The student will understand Laboratory 2 topics that include: Active Filters, Wideband Amplifiers, Class-C Amplifiers, and Colpitts Oscillator.