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What Concept of Mathematical Proof Should Future 
Teachers Possess? 

 
________________________________________________________________________ 

 
This article argues that teachers who teach at any grade level need to 

possess a sophisticated and flexible notion of mathematical proof. In particular, 
teachers must be able to teach the concept of proof in a variety of ways 
depending on their students’ mental development. Rigorous and intuitive proof 
structures are demonstrated. Mathematical proof is discussed as a way to engage 
students in a body of knowledge that is certain and provable, a quality absent in 
virtually all other disciplines. 

 
 

Mathematics at the K-12 level is 
increasingly being thought of as something 
to understand, instead of merely a set of 
procedures used to solve problems. If a 
student or teacher is to really understand 
mathematics, he/she must enter into the 
reasoning behind algorithms, move beyond 
special cases to general principles, and be 
able to persuade himself/herself (and others) 
why and how mathematical postulates work 
(NCTM, 2000).  

Some educators would be satisfied 
to have their students’ understanding rest 
upon logical-deductive proof structures. One 
example of a logical-deductive proof 
structure is the rigorous “two-column” proof 
of high school geometry. Another example 
which is often found in collegiate 
mathematics courses, or high school 
textbooks, is a structure of if-then statements 
seamlessly adjoined together which leads 
from a premise to a conclusion.  

Other educators would be satisfied 
if their students had a more intuitive feel for 
why things in mathematics are true. For 
example, when trying to decide if an odd 
plus an odd is always an even, one might 
take a certain workable example, say 9 + 5, 
and notice that you can take 1 away from the 
9 and likewise from the 5 and you have 8 + 
4 + 2 = 14, an even. It seems believable to 

many people that this process would 
generalize to any case, and thus the 
statement odd + odd = even for all whole 
numbers, would be considered true.  

Which approach toward proving 
mathematical truths should be promoted in 
the education of future K-12 teachers? By 
extension, what view of mathematical proof 
would we like these teachers to convey 
toward their future students? This paper 
argues that future K-12 teachers should be 
acquainted with a variety of proof structures, 
from the more rigorous, formal proof 
structures, all the way down to intuitive, 
heuristic styles of proof. The reasons for this 
stance are: (1) proofs are intended to 
establish certain truth claims, and thus, the 
structure of a proof must be flexible, 
dependent upon whom the proof is intended 
to persuade; (2) teachers must understand 
that their future students are limited 
developmentally in conceptualizing 
mathematics in the abstract; and (3) teachers 
who learn that mathematics is an exercise in 
finding out what things are true, and that this 
truth is able to be verified in an absolute 
sense, are learning a mathematics which is 
engaging and fulfilling. A future teacher 
who is able to persuade themselves and 
others of mathematical truth, knows what 
proof techniques are effective at different 
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age levels, and models mathematical 
engagement and fulfillment, will be an 
effective teacher.  

In an ideal world, teachers from 
kindergarten through high school would first 
convince themselves that a mathematical 
proposition is true, and then be able to 
persuade their own students with arguments 
which seem convincing to the students. 
These teachers would also convey to 
students the importance of convincing others 
(such as other students, teachers, and CSAP 
or AP Calculus test graders) of the truth or 
falsity of mathematical propositions. For 
some audiences, certain formal proof 
structures and if-then arguments are the 
most persuasive. In other cases, giving a 
reasoned argument in lay men’s terms is 
much more acceptable. To teach effectively, 
future teachers should enable students, as 
the Principles and Standards (NCTM, 2000) 
state, “to select and use various types of 
reasoning and methods of proof” (p. 402).  

One example of a mathematical 
statement that can be proved in various ways 
is as follows. Clearly, 9^2 in base 10 is 81, 
and 8^2 in base 9 is 71. Suppose we claim 
that (a-1)^2 in base a is always the number 
composed of two digits: a-2 and 1. What can 
be done to convince a person that 5^2 is 
going to be 41 without actually computing 
the product? In an elementary classroom, 
computing several products of nearby bases 
(e.g. 3^2 base 4, 4^2 base 5, 6^2 base 6, 
etc.) and noticing the pattern might be quite 
convincing to the average student. Such an 
approach is labeled by Balacheff (1988) as 
“naïve empiricism” (p. 222). However, by 
high school, students have hopefully been 
exposed to mathematical statements whose 
truth goes against the intuition, even though 
they work for almost all test values.  For 
example, as the perimeter of a polygon 
increases, the area does not necessarily 
increase (Ma, 1999). A wary student might 
not be convinced that just because 9^2 in 
base 10 is 81, and 8^2 in base 9 is 71, that 
this assures 5^2 base 6 will be 41, let alone 
all values for a. Perhaps base 6 is a special 
case. What would convince such a student? 
There are at least two approaches which 

might be demonstrated. The first, a “generic 
example” approach (Balacheff, 1988), 
would be to randomly choose a base, say 21, 
and then calculate 20^2. If the answer 
confirms our pattern, most students would 
be convinced that the pattern extends to 
every case, in particular 5^2 base 6. This 
differs from the elementary school argument 
in that the example is random, and 
somewhat representative of the class of 
items we are trying to test. For example, 
suppose I make the claim that 5 plus 
anything is less than 100. If this hypothesis 
is tested with 5 + 6, 5 + 7, …5 + 25, many 
examples have been worked and it seems 
true. However, if a “tester” case is taken, 
exploiting the class of objects 5 + n, an 
extreme n would be randomly chosen, say 
15348, and then the claim would be false.  

Nevertheless, there remains a 
second approach to the base 6 problem 
which would be sufficient to convince any 
mathematics professor, namely, the more 
rigorous symbolic approach. Let (x-1) be a 
base x number. Then (x-1)^2 = x^2 – 2x +1 
= x(x-1) + 1 = (x-1)x + 1 = [(x-1) groups of 
x] + [1 group of 1]. And applying the 
generalization to our base 6 case, we have [5 
groups of 6] + 1 which is, by definition, 51 
base 6.  

Not everyone agrees with the 
aforementioned view. Many teachers, even 
in high school, relegate proof to one class—
ninth grade geometry (Moore, 1994). Other, 
more idealistic mathematicians, are nervous 
when proofs are diluted by reliance on 
technology (Kleiner & Movshovitx-Hadar, 
1997,  p. 22) or contextualized by a 
community of learners. Some picture 
mathematics as an axiomatic system disjoint 
from a community of learners and a proof is 
a proof because it follows from axioms—it 
does not need to be designed to persuade 
different audiences (See, for example, 
Howell & Bradely, 2001, chapter 2).  

If future teachers were comfortable 
with a wide variety of proof techniques and 
structures, they would still need to know at 
what age levels students can grasp 
abstractions, and what to expect of students 
at various stages in their development when 
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they attempt to prove mathematical 
conjectures. Balacheff (1988) concludes that 
a proof hierarchy exists among students of 
the same age; that is, students engage with 
mathematical proof at different conceptual 
levels, from testing specific cases to 
conceptually grounded “thought 
experiments.” The assumption of such a 
hierarchy must be even more pronounced 
across different age levels. Piaget’s premise 
that children pass through an invariant 
sequence of four stages of cognitive 
development (Driskol, 2000, p. 191) implies 
that students, especially ages 2-11, are 
cognitively limited (or predisposed) towards 
certain types of reasoning. For example, 
according to Piaget, a student in the fourth 
grade would have difficulty working in 
hypothetical situations (e.g. Assume that 
even + even = odd and show a 
contradiction) but can logically reason using 
concrete objects (e.g. Prove that the sum of 
the legs of the chairs in the classroom will 
always be a multiple of four).  

Teachers must also keep in mind 
that proving things in mathematics is 
different than proving someone is guilty in a 
court of law, or deciding that Shampoo A is 
of a better quality than Shampoo B. As 
Yackel and Hanna (2003) assert, “By its 
very nature, mathematical proof is highly 
sophisticated and seems to be much more 
challenging intellectually than many other 
parts of the school mathematics curriculum. 
To a large extent this is so because the kind 
of reasoning required in mathematical proof 
is very different from that required in 
everyday life” (p. 231). 

Yackel and Hanna go on to suggest 
several reasons why students aren’t always 
impressed with proofs or understand why a 
proof is necessary. For example, the laws of 
inference in proofs are often anti-intuitive 
(false implies false is true). Or sometimes, 
the theorem is so intuitively obvious that 
students fail to see the need to prove it. 
Piaget suggests that a second-grade student 
would have great difficulty proving that two 
rows of three tiles covers the same amount 
of space as one row of six tiles because the 
student is in the “preoperational period” of 

his/her life, and tends to see only one aspect 
of most problems. A second-grade student 
sees the 2x3 tiles as different from the 1x6 
tiles because they look different, and it 
would never occur to him/her that they 
cover the same area because they are two 
representations of the same number of tiles. 
  Not all educators agree that 
younger students are limited in their proof 
ability as much as Piaget would suggest. The 
Principles and Standards writers argue that 
proving mathematical theorems in high 
school is so difficult for students because 
they have never been exposed to proof 
structures from the earliest grades. 
Additionally, Lampert (1990) reports on an 
elementary classroom experience in which 
students attempted to find a pattern in the 
ending digit for the sequence: 5^4, 6^4, 7^4, 
etc. By the end of the lesson, each student 
was able to state with conviction what 
he/she thought the pattern was, provide a 
“proof” that the pattern could continue, or 
explain in his/her own words another 
student’s assertion. This suggests that under 
the right conditions, students of all ages can 
engage in quality proof work.  
 Many students, including future K-
12 teachers who are currently students, see a 
theorem in the text and use it, ignoring the 
proof. They learn that an integer is divisible 
by 9 if the digits sum to 9, but would never 
think to ask why this is, or even wonder if 
they have been lied to or misinformed. Such 
mathematics learning, in my opinion, is 
unfulfilling, and is not very engaging for the 
learner. If mathematics is framed as an 
endeavor to prove the true or “falseness” of 
mathematical statements, mathematics 
becomes an exploration with a purpose, with 
unexpected outcomes and chances to make 
new discoveries. It is engaging. The well 
known mathematician Bertrand Russell, 
when expressing his feeling toward the 
discipline noted: 
“Mathematics possesses not only truth but 
supreme beauty—a beauty cold and austere, 
like that of sculpture, without appeal to any 
part of our weaker nature, sublimely pure 
and capable of a stern perfection such as 
only the greatest art can show” (Russell, 
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1907, as quoted by Howell & Bradely, 2001, 
p. 231). 

Mathematics can become personally 
meaningful for teachers, as it was for 
Russell, and I believe that part of the 
attraction of mathematics is its “cold and 
austere” beauty and truthfulness. 
Furthermore, one of the characteristics 
almost unique to mathematics is that 
virtually everything can be verified as true 
or false in an absolute sense (compare the 
claim, “even + even = even”, with the claim 
“smoking causes lung cancer”). A proof 
gives fulfillment to the learner. A learner 
does not have to check every case, can 
depend on the result in the future, and can 
solve problems with confidence knowing 
that the theorems he/she references in 
solving a problem make perfect sense to 
him/her (Geisendorfer, 2006).  

 Many people do not agree that 
mathematics needs to be engaging or 
fulfilling in the sense described above. Some 
would argue that mathematics is something 
we do, therefore as long as we know that the 
quadratic formula works (and we know it 
does because it is in the textbook), then 
getting to know how to use it is really what 
is important. The underlying rationale or 
proof of it is not really important. This 
viewpoint is often associated with the “back-
to-the-basics” movement of the 1970’s, and 
dominates certain segments of public 
opinion even today. Also, timed tests with 
computations galore are often the norm both 
at the high school and college level, and thus 
one could argue that students need to be 
rapid computers of answers, as opposed to 
slow mathematical thinkers. A good 
example of this perspective of mathematical 
learning is seen in the Saxon textbook series.  
 In arguing this thesis, the 
assumption is made that teachers who learn 
and are comfortable with various proof 
structures will be able to (1) transmit these 
skills to their students, and (2) be able to 
persuade their own students of mathematical 
truths. To support the first assumption, I 
point out that teacher conceptual knowledge 
has been linked to student skills and 

achievement in various studies—for 
example, the Chinese and U.S. teachers 
examined by Ma (1999). To support the 
second claim, I refer the reader to Hanna’s 
(1989) research study on mathematical proof 
which suggests many students can be 
persuaded by proofs that explain when 
teachers prove things with the conviction 
that mathematics does make sense.  

This paper has also made the 
assumption that if a teacher finds 
mathematics engaging and fulfilling, this 
will somehow transmit to their students. To 
support this, I mention Pehkonen and 
Torner’s (1999) article which suggests that 
mathematics educators significantly shape 
the view their students have of mathematics 
as a discipline.  
 In summary, teachers who know 
various proof strategies and use them in the 
classroom will be more effective in teaching 
students mathematics. My recommendation 
is the gradual shifting of K-12 mathematics 
curriculum toward reasoning and proof by 
district curriculum personnel.  The word 
“gradual” is used because schools and 
teachers do not have the training, support, or 
background knowledge to radically shift 
away from society’s current views of 
mathematics and how it should be taught 
and learned. It is suggested that as proof 
becomes more and more a part of preservice 
teacher courses, and that over the course of 
the next 50 years, these gradual changes in 
the teachers will also amount to significant 
changes in schools and students.  
 More will have to be done than 
simply changing curriculum to reflect a 
proof and reasoning emphasis. Teacher 
preparation programs must do their best to 
change how future teachers engage their 
students in mathematics. In Andrew (2007), 
a detailed didactic framework is described 
which may be used to measure the freedom 
students have within the classroom to 
engage in reasoning and proof. In this 
framework, teachers (whether preservice or 
practicing) are seen along a continuum from 
traditional lecturing styles onward towards 
teaching styles which allow students to 
actively engage in meaningful mathematical 
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thinking. An educator teaching future 
teachers mathematics is perceived to be 
ideal if he/she does some of the following: 
a) put students in charge of their own 
learning, b) negotiate students through their 
own (sometimes erroneous) problem 
solutions, c) allow students to be active, and 
d) instigate student-to-student interaction.   
 Interestingly enough, in the above 
study, four teachers within the same 
department are compared and it is revealed 
that students who take mathematics classes 
at the same institution can experience 
radically different teaching styles in the 
mathematics classes they take. Even though 
the goal of the department is to have their 
instructors teach within a similar 
pedagogical structure, the fact is that there is 
considerable variance among teachers at the 
same institution. A related study by Andrew 
(2006) suggests that instructors often 
encounter negative feedback from their 
students who are uncomfortable engaging in 
mathematics in a radically different way. 
Administrators should support teachers by 
anticipating student resistance to new 
teaching approaches and not reprimanding 
teachers for negative student evaluations 
which are often connected with teaching 
style.  Advocating mathematical proof more 
may help shift how people think and feel 
about mathematics and better support 
understanding of the discipline.  
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